Considerations and Approaches for High-Accuracy Robotics Applications

SOUTHWEST RESEARCH INSTITUTE®

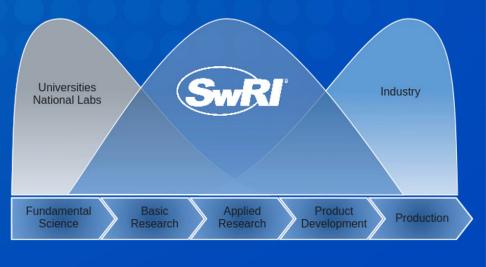
March 11, 2025

INTELLIGENT SYSTEMS

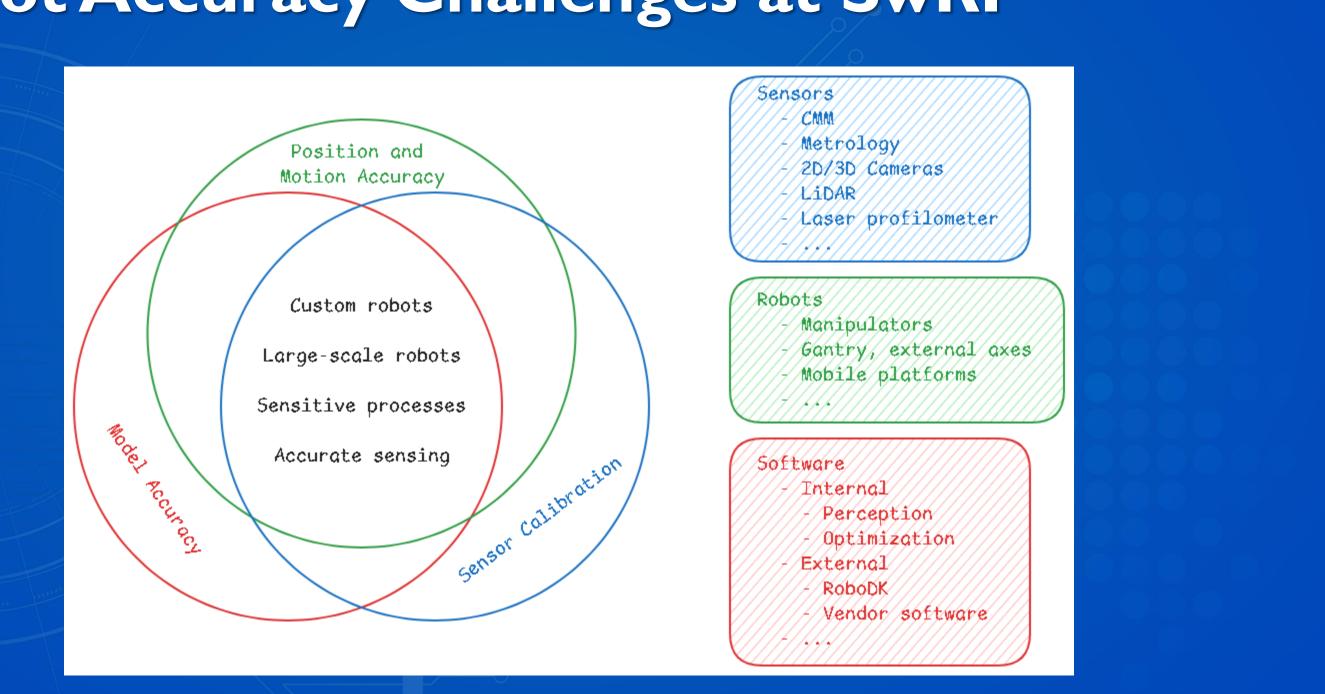
Agenda

SwRI Background Robot Accuracy Challenges at SwRI Case Studies Lessons Learned Future Needs

INTELLIGENT SYSTEMS


Southwest Research Institute

Committed to advancing science and applying technology to benefit government, industry, and all of humanity.



About SwRI: - Est. 1947 – San Antonio, TX Independent, not-for-profit _ ~3000 staff Applied RDT&E services _ Physical sciences and engineering

INTELLIGENT SYSTEMS

Robot Accuracy Challenges at SwRI

INTELLIGENT SYSTEMS

Research Caveat

Not using robots in traditional way
 <u>COTS robots</u>

- Teach pendant programming
 Physical touch-off
 Hard fixturing
- Teaching old robots new tricks
 - Motion planning with virtual models
 - Perception with sensors
 - Leveraging low-cost equipment + software

INTELLIGENT SYSTEMS

Challenges

INTELLIGENT SYSTEMS

Custom Robots

Needs

 Kinematic calibration
 TCP calibration

 Constraints

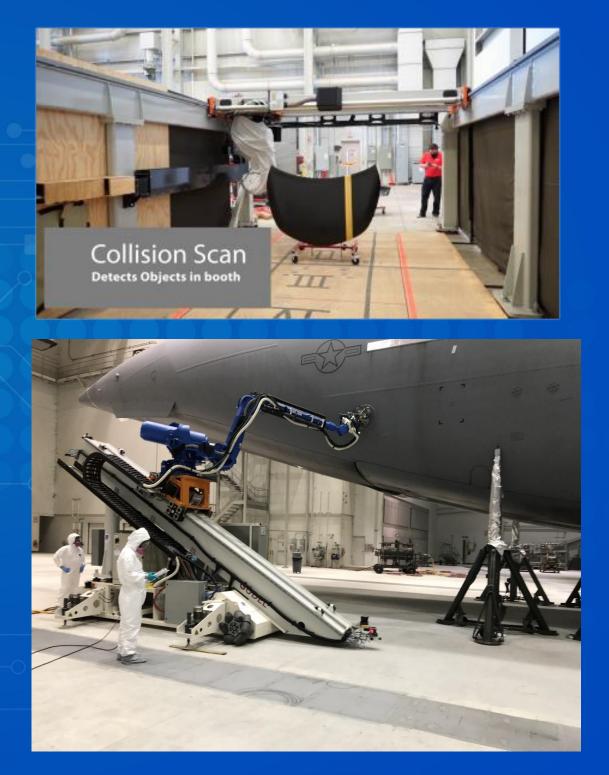
- Use kinematic structure with closed-form IK solution
- Resource-constrained compute for control system
- Vendor control system software access

INTELLIGENT SYSTEMS

Custom Robots

Problems

- How to handle backlash, hysteresis?
- How to integrate optimized kinematic model into controller?
- How to integrate live measurements of TCP into control system?
- How to guarantee specific level of accuracy?
- How to handle variations (temperature, loading, etc.)?



INTELLIGENT SYSTEMS

Large-scale Robots

- Workspace extension (rail, gantry, part positioners) required for many applications
- Problems
 - Dissimilar levels of hardware accuracy
 - Integrated with robot, but considered separate
 - Calibration of external axes performed with robot
 - Correspondence to virtual models
 - "Regular" accuracy tolerances become difficult at larger scales
 - Physical deflection under load
 - Closed-loop TCP control system may still be necessary

INTELLIGENT SYSTEMS

Custom and Large-scale Robots

Approaches

- Perform various levels of kinematic calibration Fix it in hardware
- Fix it in software

Estimate kinematic parameters in CAD

Estimate kinematic parameters with sensor

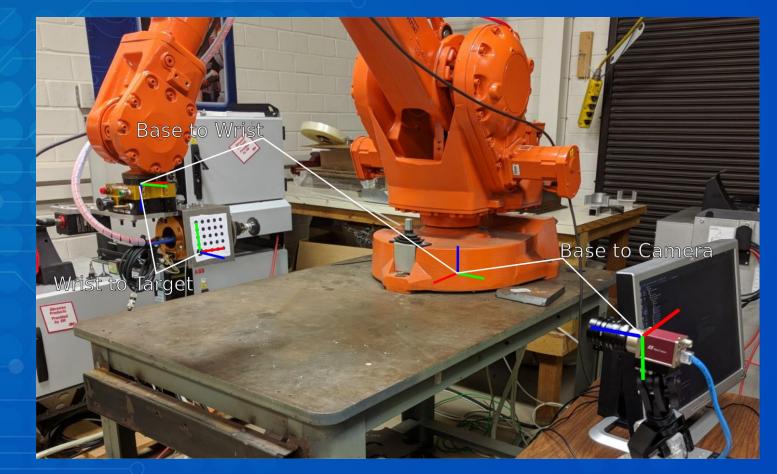
Kinematic calibration with subset of parameters

SwRI

Marabu

XYREC AIRBUS Suff

Kinematic calibration with full model


INTELLIGENT SYSTEMS

10

Robot Accuracy + Sensor Calibration

Problems

- Interdependence of extrinsic sensor calibration on robot position accuracy
- Sensor mounting is critical
- Approaches
 - Calibrate where robot operates
 - Error/uncertainty modeling
 - Calibration metrics (residual error, reprojection error, uncertainty)

INTELLIGENT SYSTEMS

11

Case Studies

INTELLIGENT SYSTEMS

13

- Plasma cutting on castings in a steel foundry
- Hardware
 - ABB IRB6700, absolute accuracy (<1.5 mm)
 - 2-axis positioner (1500 kg cap.)
 - Photoneo Phoxi XL 3D sensor

INTELLIGENT SYSTEMS

swri.org

14

Constraints

- Geometry differs per casting
- I-4 mm gap for arc
- Environment (soot, dirt, temperature fluctuation)
- Heat, light, vibration from plasma torch
- Workpiece size
- Cost

INTELLIGENT SYSTEMS

15

Problems

- Plasma standoff controller
- Hardware, sensor calibration
- Positioner deflection
- Temperature fluctuation
- Sensor mounting
- Approaches
 - Camera calibration
 - Kinematic calibration
 - Manipulator-mounted camera

INTELLIGENT SYSTEMS

16

- Result:
 - Improvements from kinematic calibration and wrist-mounted camera
 - Not enough for full success with plasma cutting
- Lessons learned
 - How to handle virtual model vs. hardware discrepancies
 - Camera mounting is critical
 - Local control system might be better than globally accurate sensor reconstruction

IGENT SYSTEMS

17

Case Study: High-accuracy Assembly

- Insert "lid" into "box" containing sensitive contents
- Previous approach required tedious physical touch-off
- Constraints
 - 0.001" position fit tolerance
 - Box/lid fixturing not accurate/repeatable
 - Touchless
- Hardware
 - UR5e manipulator
 - Fixture for box mounting
 - End effector fixture for holding lid

INTELLIGENT SYSTEMS

swri.org

18

Case Study: High-accuracy Assembly

Approach

- Add features to fixtures for visual detection
- Perform "local" calibration
- Detect poses of box, lid
- Estimate pose offset for assembly
- Command relative pose

INTELLIGENT SYSTEMS

19

Case Study: High-accuracy Assembly

- Result
 - Successful calibration of 4 cameras
 - Successful assembly within tolerance
- Lessons learned
 - OTS robots can have high local accuracy
 - Kinematic calibration is not always required
 - Many environmental factors become important at tight tolerances (lighting, temperature, vibration, etc.)

IGENT SYSTEMS

20

Conclusions

INTELLIGENT SYSTEMS

21

General Lessons Learned

Many factors influence accuracy: test and measure Solutions exist on a spectrum Operate locally when possible - Control systems vs. calibration Is it necessary to build fully calibrated, accurate "world" models? Sensor mounting: static vs. robot-mounted? Accessibility for operators

SYSTEMS

22

Future Needs

Integration of complex kinematic models into software

- Robot controller
- User applications
- Standard approach to kinematic calibration for various types of common setups
- Taxonomy of kinematic calibration approaches
- Metrics for evaluation of calibrations
- Robot accuracy heat map in workspace

SYSTEMS

23

Thank You

Michael Ripperger

Senior Research Engineer Southwest Research Institute

michael.ripperger@swri.org

INTELLIGENT SYSTEMS

24