
Distributed Algorithm for Suppressing Epidemic
Spread in Networks

Van Sy Mai, Abdella Battou and Kevin Mills

Abstract—This paper considers problems related to suppress-
ing epidemic spread over networks given limited curing resources.
The spreading dynamic is captured by a susceptible-infected-
susceptible model. The epidemic threshold and recovery speed
are determined by the contact network structure and the het-
erogeneous infection and curing rates. We develop a distributed
algorithm that can be used for allocating curing resources to
meet three potential objectives: minimize total curing cost while
preventing an epidemic; maximize recovery speed given sufficient
curing resources; or given insufficient curing resources, limit the
size of an endemic state. The distributed algorithm is of the Jacobi
type, and converges geometrically. We provide an upper bound on
the convergence rate that depends on the structure and infection
rates of the underlying network. Numerical simulations illustrate
the efficiency and scalability of our distributed algorithm.

Index Terms—optimization algorithms, agent-based systems,
networked control systems.

I. INTRODUCTION

EPIDEMIC spreading processes appear in a range of
network phenomena, such as (online) social behaviors,

diffusion of infections in people or computers, and cascading
of failures. Dynamic behavior in such processes is among the
most widely studied subjects in network science; see, e.g., [1]–
[6], and also see [7], [8] for a recent survey. Many epidemic
processes exhibit a critical threshold characterizing a network
phase transition. When operating below the threshold, the
network reaches an outbreak-free equilibrium; but otherwise
enters an endemic state. The critical threshold is known [7],
[9], [10] to relate to the contact graph in the network. Based
on such information, many strategies for epidemic control
have been proposed and studied [11]–[20]; see also [8] and
references therein. Existing research in this direction focuses
mostly on centralized approaches to determine efficient con-
trol policies. Clearly, centralized algorithms face scalability
challenges when applied to very large networks.

In this paper, we develop distributed algorithms for op-
timally suppressing an epidemic spread in a network with
heterogeneous population, and subject possibly to limited
available resources. Specifically, we consider a susceptible-
infected-susceptible (SIS) epidemic model on a weighted
directed network. We deal with three problems: (i) find a
cost-optimal resource distribution to cure the network (i.e.,
annihilate the epidemic spread) at a target rate, (ii) given
sufficient resources, allocate them to maximize recovery speed,
and (iii) given insufficient resources (i.e., an outbreak occurs),

*This work is supported by National Institute of Standards and Technology
(NIST). Mention of commercial products does not imply NIST’s endorse-
ment. The authors are with the Information Technology Laboratory, NIST.
{vansy.mai,abdella.battou,kevin.mills}@nist.gov

find a resource distribution that minimizes the size of the
endemic state. Next, we review related, previous work.

Related works: Centralized methods for dealing with similar
optimization problems include: projected gradient method for
undirected unweighted graphs [14], semidefinite programming
(SDP) and greedy heuristics for undirected symmetrically
weighted graphs [15], [19], [20], and Geometric Programs for
directed weighted networks [19]. As network size increases
to be very large, these approaches become impractical to
implement on a single machine. Further, these approaches
require knowledge of all problem parameters, which are spread
across the network. In [19], the authors rely on the community
structure to reduce the problem dimension, and then extend
the SDP approach to provide suboptimal solutions for directed
weighted networks. In [21], a distributed algorithm based on
an Alternating Direction of Multipliers Method is proposed,
where every network node maintains and exchanges local esti-
mates for full network state. Due to expensive communication
cost, this algorithm does not scale well to very large networks.
Further, because every node must solve a complicated convex
sub-problem with dimension of at least network size, the
algorithm’s convergence rate has not been established. Recent
work [22] develops distributed algorithms in a similar context,
but with some caveats. First, all nodes must use a common step
size, with an upper bound involving spectrum of L2, where L
is the network Laplacian matrix. Thus, this step size needs
to be designed by a centralized unit. Second, the gradient
directions for each optimization step are estimated by having
the nodes implement an augmented power iteration algorithm,
where a second, independent, distributed algorithm determines
when to stop the iteration algorithm.

Our contributions: We develop an efficient, distributed
algorithm that requires inexpensive local message-passing,
but still exhibits fast convergence. Specifically, the algorithm
requires each node to communicate only a subset of the
state vector, and converges geometrically. We show that the
algorithm output can be used to obtain optimal (or suboptimal)
solutions to three essential problems regarding suppression of
epidemics over a weighted directed network with some mild
assumptions requiring an additional, independent consensus
process to obtain a piece of centralized information.

The rest of the paper is organized as follows. In Section
II, we describe the network epidemic model and associated
problems of interest. Our main results are given in Sections
III and IV, followed by a numerical example in Section V.

Notation and terminology: R denotes the set of real num-
bers. For a matrix A = [aij], [A]ij and aij denote its (ij)
element, AT its transpose, and λi(A) its i-th largest (in

magnitude) eigenvalue. For two matrices A and B, we write
A ≥ B if A − B is a nonnegative matrix (i.e., a matrix with
all nonnegative elements). Vectors are denoted by bold letters,
e.g., x = [x1, . . . , xn]T, 1 = [1, . . . , 1]T and 0 = [0, . . . , 0]T.
If f : Rn → R is differentiable, ∇f denotes its gradient and
∂if its partial derivative w.r.t. the i-th coordinate. A directed
graph G = (V, E) consists of a set of nodes V and a set
E ⊆ V×V of direct edges. A directed path is a sequence of
edges in the form (i1, i2), (i2, i3), ..., (ik−1, ik). Node i is said
to be reachable from node j if there exists a path from j to
i. Each node is reachable from itself. Graph G is strongly
connected if each node is reachable from any other node.

II. PROBLEM FORMULATION AND ASSUMPTIONS

A. Modeling Epidemic Spread in Networks

We adopt a continuous time model, called the N -intertwined
SIS model, proposed in [6], [23] in the context of directed
networks similar to those considered in [10], [16]. Given a
network of N agents with the underlying contact topology
G = (V, E), each agent i ∈ V = {1, 2, ..., N} can be either
susceptible or infected. Transition between these two states is
characterized by its curing rate δi ≥ 0 and the infection rates
of its neighbors βij > 0, (ij) ∈ E . The whole network can
thus be represented by a continuous-time Markov model with
2N states. The analysis of such a model becomes difficult for
large networks, as the state space grows exponentially; hence,
the need for a good approximation, as described next.

Let pi(τ) ∈ [0, 1] denote the probability of node i being
infected at time τ ≥ 0 (here time is continuous). Using a
mean-field approximation yields the following Markov differ-
ential equations for the infection states:

dpi
dτ

=
(
1−pi(τ)

)(∑
j∈N+

i
βijpj(τ)

)
−δipi(τ), ∀i ∈ V, (1)

where N+
i denotes the set of nodes that send information

directly to agent i; a.k.a., in-neighbors of node i. Intuitively,
the infection dynamic of each node i ∈ V is governed by
two processes: (i) while healthy with probability (1− pi(τ)),
node i gets infected at rate βij from each infected neighbor
j ∈ N+

i -an event with probability pj(τ), and (ii) while
infected with probability pi(τ), node i is cured with rate δi.
Depending on these parameters and the network structure,
this nonlinear model exhibits two equilibria: a disease-free
state, where the whole network is cured eventually (i.e.,
limτ→∞ pi(τ) = 0,∀i ∈ V), and an endemic state, where
each agent is infected with a strictly positive probability [10],
[23] (i.e., limτ→∞ pi(τ) > 0,∀i ∈ V). The phase transition
can be characterized using

λc := max1≤k≤N Re{λk(B −D)}, (2)

where D = diag(δi), B = [βij], and Re{λk(B−D)} denotes
the real part of the eigenvalues of B−D; λc is also known as
the stability modulus. Specifically, if λc>0, the network enters
an endemic state, while the disease-free state is the unique and
stable equilibrium if λc ≤ 0. In the latter case, λc is also an
upper bound on the decay rate of pi(t); i.e., the smaller λc,
the faster convergence to the disease-free state. Such analysis
rests on the following assumption.

Assumption 1: G is fixed and strongly connected.

B. Problem Statements
Suppose that the cost per curing unit associated with each

node i ∈ V is wi > 0. Let w = [w1, . . . , wN]T. For a given
curing profile δ = [δ1, . . . , δN]T, we define

U(δ) := wTδ

as the total network-wide cost. Note that this linear cost is
similar to that in [19] and is more general than the uniform
cost (or budget constraint) in [12]–[14], [17], [20], [22]. We
are interested in the following three problems.

Problem 1: (Cost Minimization) Given a desired decay rate
λ0 ≤ 0, determine in a distributed manner an optimal curing
profile δ that minimizes the total cost:

minδ≥0

{
U(δ) | λc ≤ λ0

}
. (3)

The optimal cost clearly depends on the value λ0 and will
be denoted by U∗λ0

. (Throughout, we use superscript ∗ when
referring to optimal values or solutions.) Note that the phase
transition of the model (1) occurs at λc = 0 and thus U∗0 can
be interpreted as the minimal cost to prevent the epidemic.

In practice, it is also often the case that a limited budget C
is available for the whole network. Depending on whether the
budget is sufficient to cure the network or not, it is natural to
consider the following problems.

Problem 2: (Rate Maximization) Given a total budget C >
U∗0 , determine in a distributed manner a curing profile δ that
optimizes the convergence rate:

minδ≥0
{
λc | U(δ) ≤ C

}
. (4)

Problem 3: (Damage Minimization) Given an insufficient
budget C < U∗0 , determine a (sub)optimal resource allocation
to suppress the infected fraction at the endemic state:

minδ≥0
{
1Tv | U(δ) ≤ C

}
, (5)

where v = [v1, . . . , vN]T with vi = limτ→∞ pi(τ).
Here, Problems 2 and 3 correspond to two different scenar-

ios with different objectives, depending on the comparative
relation between C and U∗0 . We will show that such compar-
ison can also be performed in a distributed manner.

In this paper, we assume that any distributed algorithm will
be implemented in an overlay network of m controllers G̃ =
(Ṽ, Ẽ), where Ṽ = {1, ...,m} and each controller c ∈ Ṽ has
complete information about a subpart Cc of G, and {Cc}mc=1

is a partition of G. We also denote by Cc the controller c. Cc
and Cd are neighbors if ∃(ij) ∈ E with i ∈ Cc and j ∈ Cd.
A special case is G̃ ≡ G; G̃ can also be a network of virtual
machines in the cloud. We allow two neighboring controllers
to cooperate by information exchange. Our goal is to derive
distributed algorithms so that each Cc can compute {δ∗i }i∈Cc .

III. MAIN RESULTS FOR PROBLEMS 1 AND 2
This section proceeds as follows. In Section III-A, we

derive a reformulation of (3), which is an unconstrained
Geometric Program. We then present our main assumptions
and a distributed algorithm for solving the resulting problem.
In Section III-B, we show this algorithm can also be used for
dealing with Problem 2.

A. Assumptions, Algorithm and Convergence

First, note that (3) is equivalent to the following

(a)⇔ minδ≥0,x>0

{
wTδ

∣∣∑
j∈V βijxj/xi ≤ δi+λ0,∀i ∈ V

}
(b)⇔ minx>0 G(x) :=

∑
i∈V

∑
j∈V wiβijxj/xi, (6)

where (a) holds by using the same technique in [24, §4.5.4]
(see also Appendix A below) and (b) by variable eliminations
since equalities hold in (a). Although (6) does not depend on
λ0, it is equivalent to (3) in the sense that an optimal solution
of one problem can be inferred from the other:

G∗ = U∗λ0
+λ0w

T1, δ∗i =
∑
j∈V βijx

∗
j/x
∗
i − λ0. (7)

Note that when λ0 = 0, (7) simply implies that G∗ = U∗0 ,
i.e., (6) indeed amounts to finding the minimal cost to prevent
the epidemic. Moreover, (6) is a Geometric Program; it is
nonconvex in its current form but is convex in log-scale of the
variables [24]. Applying a change of variables yi = log xi to
(6) yields the following equivalent problem:

miny∈RN F (y) :=
∑

(ij)∈E wiβije
yj−yi , (8)

where the optimal value is denoted by F ∗. Clearly, F ∗=G∗.
Let Y ∗ denote the set of optimal solutions. Y ∗ is nonempty;
see Appendix A. Since (8) is an unconstrained convex problem
with a smooth objective function, it follows that

y∗ ∈ Y ∗ ⇔ ∂iF (y∗) = 0, ∀i ∈ V. (9)

Clearly, y∗+c1 ∈ Y ∗ for any y∗ ∈ Y ∗ and c ∈ R.
The rest of this subsection is focused on solving (8) in a

distributed manner based on condition (9). Compared to (3),
(8) is more suitable for distributed implementation since each
partial derivative

∂iF (y) =
∑
k∈N−i

b̃kie
yi−yk −

∑
j∈N+

i
b̃ije

yj−yi , (10)

where N−i denotes the set of out-neighbors of agent i and
b̃ij = wiβij ∀(ij) ∈ E , can be evaluated locally at the
controller associated with node i ∈ V using local information
from neighboring controllers that have node i’s neighbors
information. This will be key to developing our distributed
algorithm, which differs significantly from existing ones [16],
[21]. To enable local evaluations of partial derivatives, we
assume the following:

Assumption 2: G̃ is fixed, undirected and connected.
We now remark on key properties of F that will guide

the development of our algorithms for solving (8). First,
F is not strictly convex (hence not strongly convex) since
F (y) = F (y + c1),∀y ∈ RN ,∀c ∈ R. Second, F (as
well as G) is continuously differentiable but its gradient
∇F (also ∇G) is not Lipschitz continuous and the level set
{y|F (y) ≤ c} is either empty or unbounded. Thus, most
descent algorithms are not guaranteed to converge as their
step size depends on either the Lipschitz parameter of ∇F
or boundedness of level sets. Thus, we opt for nonlinear (or
coordinate descent) algorithms.

We first consider the nonlinear Gauss-Seidel algorithm (see,
e.g., [25]) applied to (8). We have the following:

Theorem 1: Let {y(t)}t≥0 be a sequence satisfying

yi(t+ 1) = arg min
ξ
F
(
y1(t+ 1), ..., yi−1(t+ 1), ξ,

yi+1(t), ..., yN (t)
)
.

(11)

Then every limit point of {y(t)} belongs to Y ∗.
Proof: Since F is continuously differentiable and convex,

and strictly convex in each yi when the values of the other
components of y are fixed, the result follows immediately from
[25, Prop. 2.5, p. 208].

Here, (11) admits a closed form solution for yi(t+1) based
on the partial derivative of F in (10). However, {y(t)} need
not converge. Moreover, to parallelize (11) for implementation
on G̃, one has to design a coloring scheme for G such that the
controllers can update corresponding estimates {yj}j∈Cc ,∀c ∈
Ṽ; see, e.g., [25] for details.

To avoid such implementation requirement, we
may consider the Jacobi update iteration: yi(t + 1) =
arg minξ F

(
y1(t), ..., yi−1(t), ξ, yi+1(t), ..., yN (t)

)
,∀i ∈ V ,

which obviously is much easier to implement in parallel.
However, this update may not converge to any solution of
problem (8) either. Consider, e.g., F (y) = ey2−y1 + ey1−y2 ,
where {y(t)} oscillates between (y1(0), y2(0)) and
(y2(0), y1(0)). Below, we introduce a modified version of the
Jacobi update that is guaranteed to converge geometrically.

Algorithm description: Suppose that each Cc is aware of
local parameters {b̃ij}j∈N+

i
and {b̃ki}k∈N−i for all i ∈ Cc. At

t= 0, each Cc initializes {yi(0)}i∈Cc . At any t > 0, each Cc
updates its estimates {yi}i∈Cc using local information:

yi(t+ 1) =yi(t) + αi(y
+
i (t)− yi(t)), (12)

where αi ∈ (0, 1) is an arbitrary step size and

y+
i (t) := 1

2 log
[∑

j∈N+
i
b̃ije

yj(t)/
∑
k∈N−i

b̃kie
−yk(t)

]
. (13)

Subsequently, Cc sends yi(t+ 1) to its neighbors who need it.
Detailed implementations are shown in Algorithm 1 below.

Algorithm 1: Distributed Cost Minimization

1 init: Each Cc selects yi(0) and collects {b̃ij}j∈N+
i

,
{b̃ki}k∈N−i , {yv(0)}v∈N+

i ∪N
−
i

for all i ∈ Cc
2 for t = 1, 2, . . . do
3 forall Cc ∈ Ṽ do
4 Update {yi(t+1)}i∈Cc by (12)–(13)
5 Send yi(t+1) to neighboring controllers

6 Cc: {y∗i ,∀i∈ Cc}

The form of y+
i (t) is derived from condition (9), and αi

in (12) is a relaxation parameter used to avoid oscillations.
Clearly, except for being synchronous, this algorithm does
not require any other piece of centralized information. Its
convergence and rate of convergence are shown next.

Theorem 2: Consider Algorithm 1 with any y(0) ∈ RN
and αi ∈ (0, 1). Under Assumptions 1–2, limt→∞ y(t) = y∗

for some y∗ ∈ Y ∗. Moreover, the convergence is geometric.
Indeed, there exists Γ > 0 such that ∀i ∈ V,∀t ≥ 0

|yi(t+ 1)− y∗i | ≤ Γµt, µ = (1− 2γd)
1
d , (14)

where d is the diameter of the graph obtained
from G by replacing each directed edge with an
undirected one, γ = mini∈V{1 − αi, αiη} with η =
1
2 mini∈V minz∈Ȳ ,l∈N+

i ∪N
−
i

[
b̃ile

zl∑
j∈V b̃ije

zj
+ b̃lie

−zl∑
k∈V b̃kie

−zk

]
and Ȳ ⊂ RN the closed convex hull of {y(t)}t≥0.

Proof: See Appendix B.
Clearly, the convergence rate µ given in (14) depends on

the underlying network G through parameters d and η, the
step sizes chosen by the controllers in G̃, and initializations
y(0) and weighted infection rates b̃ij through η. In general,
solving for η exactly may not be practical since it requires
not only B̃ but also Ȳ , which depends on {y(t)}. A more
practical lower bound of η, depending only on B̃, might be
obtained as shown in the following corollary by noting that

a1∑n
i=1 ai

+ b1∑n
i=1 bi

≥ a1b1∑n
i=1 aibi

,∀{ai}ni=1, {bi}ni=1 ⊂ R≥0.

Corollary 1: If N bi
i :={j|(ij), (ji) ∈ E} 6= ∅,∀i∈V , then

η ≥ 1

2
min
i∈V

min
l∈Nbi

i

(
b̃ilb̃li/

∑
j∈Nbi

i
b̃ij b̃ji

)
Remark 1: (Solution to Problem 1) After Algorithm 1

executes1, each Cc can determine {δ∗i }i∈Cc as in (7), i.e.,
δ∗i =

∑
j∈N+

i
βije

y∗j−y
∗
i −λ0,∀i ∈ Cc, provided λ0 is known

to all of them. This piece of information can be flooded to all
the controllers from either a network designer or a controller.

B. Solution to Problem 2

We first demonstrate how the controllers can determine in
a distributed manner if total budget C is sufficient, i.e., C >
G∗. This is done by running another distributed algorithm on
G̃ (after Algorithm 1) to find the average C−G∗

m . Then, we
provide a solution to Problem 2, provided C>G∗.

1) Distributed Computation of C−G∗
m : Assume that each

Cc is aware of a fraction of budget, denoted by CCc , such that∑
c∈Ṽ CCc =C (e.g., CCc = C/m). Let the controllers finish

Algorithm 1 (the implementation of which does not require
knowledge of CCc or C). Then each Cc can compute f̃Cc :=
CCc−

∑
i∈Cc f

∗
i with f∗i =

∑
j∈N+

i
b̃ije

y∗j−y
∗
i . Thus,

C−G∗
m = 1

m

∑m
c=1 f̃Cc

can be computed in a distributed fashion by using an averaging
consensus algorithm (e.g., [26]) on G̃. Such an algorithm
converges geometrically and is independent of Algorthm 1.

2) Optimal Solution: Our next result connects (4) and (6).
Theorem 3: Suppose x∗ is an optimal solution to (6). Then,

provided C > G∗, a solution to (4) is given by

δ∗i =
∑
j∈V βijx

∗
j/x
∗
i + (C −G∗)/1Tw, ∀i ∈ V (15)

with the corresponding optimal rate λc(δ∗) = G∗−C
1Tw

.
Proof: We prove by contradiction. Suppose δ∗ given by

(15) is not optimal, i.e., ∃ζ ≥ 0 such that U(ζ) ≤ C and
λc(ζ) < λc(δ

∗). By Lemma 1 in Appendix A, ∃x > 0 such
that (B− diag(ζ))x = λc(ζ)x. Multiplying both sides by wT

1Although Algorithm 1 converges only in the limit as t → ∞, its geometric
convergence rate allows the controllers to terminate the algorithm after a
sufficiently large number of steps with reasonable accuracy; designing such a
number is out of the paper’s focus and is left for future work.

and rearranging terms yields
∑

(ij)∈E wiβijxj/xi−wTζ =

λc(ζ)1Tw. Thus, G(x)−U(ζ) = λc(ζ)1Tw<λc(δ
∗)1Tw =

G∗ − C. We then have G(x) − G∗ <U(ζ) − C ≤ 0, which
contradicts the fact that G∗ is the optimal value of (6).

It is now clear that both (3) and (4) are equivalent to (6), for
which an optimal solution can be found by using Algorithm 1.
It remains to specify how each Cc can determine its local
optimal {δ∗i }i∈Cc in a distributed manner. By (15), it suffices
to show how each Cc estimates C−G∗

1Tw
, which equals(

C−G∗
m

)
/
(

1
m

∑m
c=1 wCc

)
, (16)

where wCc =
∑
i∈Cc wi is locally known to Cc. Clearly, (16)

is the ratio of two average terms, the first of which has been
computed earlier and the second can be found in a similar
fashion by the controllers.

IV. MAIN RESULT FOR PROBLEM 3
We now turn to the problem of suppressing the long term

effect of the infection spread under an insufficient budget. Note
that such insufficiency can be detected locally as shown in
Section III-B1. Recall that vi=pi(∞) and at the steady state
of (1) we have∑

j∈V βijvj(1− vi) = δivi, ∀i ∈ V. (17)

Besides the trivial solution v = 0, (17) admits a unique v>
0 for each δ ≥ 0 (see, e.g., [6], [23]) and thus vi(δ) > 0
are well defined as functions of δ. However, such functions
are implicit, and thus difficult to deal with. We consider the
following inverse problem:

minv>0,δ≥0
{
U(δ) | (17) and 1Tv ≤ νN

}
, (18)

where ν ∈ [0, 1] is a constant representing a tolerable infected
fraction. Here, (18) amounts to finding the minimum cost for a
given level of damage. It is shown in [14] that (5) and (18) are
indeed equivalent, in the sense that a solution of one problem
implies a solution of the other. The latter is preferable here
since we can express it as follows:

minv>0

{
I(v) :=

∑
(ij)∈E(v

−1
i −1)b̃ijvj |1Tv ≤ νN

}
, (19)

where the optimal value is denoted by I∗ν . Solving this
nonconvex problem is challenging even using a centralized
method. In [14], a projected gradient method is used to find a
local minimum. We instead provide upper and lower bounds
on I∗ν based on the similarity between (19) and (6). For (6),
a solution x∗ can be obtained readily in a distributed fashion
using Algorithm 1 above.

Theorem 4: Let x∗ be an optimal solution of (6) and G∗

the optimal value. Let b̄= maxi∈V
∑
j∈V b̃ji, Lν =G∗−νNb̄,

U1
ν =G∗−νN 1TB̃x∗

1Tx∗
and U2

ν =(1−ν)1TB̃1. Then

Lν ≤ I∗ν ≤ min{U1
ν , U

2
ν }, ∀ν ∈ (0, 1), (20)

where Lν =I∗ν =U1
ν iff

∑
j∈V b̃ji= b̄ for all i∈V .

Proof: For any feasible point v of (19), we have I(v) =
G(v)−1TB̃v ≥ G(v)− b̄1Tv ≥ G∗− b̄νN . The lower bound
then follows. We now prove the upper bound. First, notice that
I∗ν ≤ I(ν1) = (1− ν)1TB̃1. Second, it can be seen that

uν := νNx∗/1Tx∗ (21)

is an optimal solution of (6) and is feasible for (19). Thus,
I∗ν ≤ I(uν) = G(uν)−1TB̃uν = G∗−νN1TB̃x∗/1Tx∗,
where equality holds if

∑
j∈V b̃ji =

∑
j∈V b̃jk,∀i, k ∈ V .

It remains to show the “only if” statement. To this end, we
prove that if

∑
j∈V b̃ji <

∑
j∈V b̃jk for some (ik) ∈ E , then

I(uν) is not optimal. Let uεν =uν+ε(ei−ek), where ε ∈ R
and ei denotes the i-th unit vector in RN . Since uν > 0,
∃ε0 > 0 such that uεν is a feasible point of (19) for all ε ∈
[−ε0, ε0]. Using the optimality condition of G, we can show
that d

dεI(uεν)|ε=0 =
∑
j b̃ji −

∑
j b̃jk < 0. Thus, ∃ε ∈ (0, ε0)

such that I(uεν) < I(uν), i.e., I(uν) is not minimal.
In general, U1

ν and Lν get tighter as ν → 0, while U2
ν

is tighter as ν → 1. Here, U2
ν corresponds to an in-degree-

based solution δi =
∑
j∈V b̃ij(1 − ν), while U1

ν and Lν
correspond to out-degree-based ones. The regularity condition∑
j∈V b̃ji =

∑
j∈V b̃jk,∀i, k ∈ V yields optimality for any ν.

We can interpret mini U
i
ν and Lν , respectively, as sufficient

and necessary costs to ensure that the infected fraction is less
than ν. Similarly, for a given budget C, simply by solving
C = mini U

i
νu and C =Lνl , we can find an upper bound νu

and lower bound νl on the final infected fraction.
We conclude this section by showing that the upper bound

can be used to obtain a suboptimal solution δ† to Problem 3.
Given C, solving C = U1

ν yields ν = G∗−C
1TB̃x∗

1Tx∗

N , which can
be ensured with v=uν as in (21). By (17), we have

δ†i =
∑
j∈N+

i
βij

x∗j
x∗i
− G∗−C∑

i∈V,j∈N+
i
b̃ijx∗j

∑
j∈N+

i
βijx

∗
j .

Note that after running Algorithm 1, each Cc knows x∗i and
hi :=

∑
j∈N+

i
b̃ijx

∗
j ,∀i ∈ Cc. Then, the controllers can run

additional average consensus algorithms (e.g., [26]) to com-
pute G∗−C∑

i∈V hi
=
(
G∗−C
m

)
/
(

1
m

∑
i∈Vhi

)
; see also Section III-B1.

Therefore, δ†i can be obtained in a distributed manner.

V. SIMULATION EXAMPLE

Consider a network based on the largest strongly connected
component of a Wikipedia vote network studied in [27] (data
available at http://snap.stanford.edu/data/wiki-Vote.html) with
1300 nodes and 39456 edges. We assume w = 1 and generate
the infection rate bij ∈(0, 1) randomly for each edge (ij) ∈ E .
Our simulations are carried out in Matlab on a laptop computer
with 8GB RAM and CPU i5@2.4GHz. We first solve (8) by
using Algorithm 1 with Ṽ ≡V and compare the results with a
centralized interior-point method (IPM). For the latter, we use
a package [28], which we denote by OPTI-H when the exact
Hessian matrix is supplied and by OPTI when the Hessian
matrix is approximated by using a Quasi-Newton algorithm.

Fig. 1 shows convergence of Algorithm 1 after 100 iterations
with y(0) =0 and αi≡α for different values of α (the case
αi=rand means each αi is chosen randomly in [0.1, 1]) and
that of the IPM. While OPTI and OPTI-H take 245ms and
6.954s, respectively, Algorithm 1 takes only 71ms on average.
We notice that Algorithm 1 still converges for some α≥1 but
diverges if α≥1.3. We also evaluate the bounds in Theorem 4
and compute an improved upper bound, namely U3

ν := I(v†)
where v† is a local optimizer of (19) obtained by using the
centralized IPM with an initial guess as in (21) if U1

ν <U
2
ν , or

y(0)=log(ν)1 otherwise. Here, Lν is rather loose and U1
ν−Lν

is large due to large variation of 1TB.

APPENDIX

A. Equivalence of (3) and (6) and Existence of Solutions

The following result, similar to [18, Lem. 3], is essentially
an application of the Perron-Frobenius theorem [29].

Lemma 1: Let B,D∈RN×N≥0 such that B is irreducible and
D is diagonal. Let ν = maxi Re{λi(B−D)}. Then, ∃x > 0
(unique up to a scaling factor) satisfying (B−D)x=νx.

Equivalence: Straightforward application of Lemma 1.
Existence of Solutions: Consider (3). Note that its feasible

set is nonempty. This can be seen by choosing δ = c1
for sufficiently large c > 0 and using Lemma 1. Now,
fix such a number c and consider an equivalent problem
minδ≥0 {U(δ) | wTδ ≤ cN, λc(B−D) ≤ λ0}, where the
cost function is continuous and the constraint set is bounded.
Since λc(B−diag(δ)) is continuous in δ, the constraint set is
also closed. Thus an optimal solution δ∗ exists.

B. Proof of Theorem 2

Let {y(t)} be a sequence generated by Algorithm 1. We
first show that {y(t)} is bounded. Then we will show that
{y(t)} must converge geometrically to an optimal solution.

Let gi(y) := 1
2 log

(∑
j∈V b̃ije

yj/
∑
k∈V b̃kie

−yk
)
,∀i ∈ V.

Clearly, gi is continuously differentiable and gi(y(t)) =
y+
i (t),∀t ≥ 0; see (13). Now fix a y† ∈ Y ∗ (see Appendix

A for the existence) and define ε(t) := y(t)− y†. By (12),

εi(t+ 1) = (1− αi)εi(t) + αi
(
gi
(
y(t)

)
− y†i

)
.

Using the fact that gi
(
y†
)

= y†i (cf. the optimality condition
(9)) and the Mean Value Theorem, we have

gi(y(t))−y†i = ∇gi
(
z(i)(t)

)T
(y(t)− y†),

with z(i)(t) :=(1−c(i)t)y(t)+c
(i)
t y† and c(i)t ∈ [0, 1]. Thus,

εi(t+1)=(1−αi)εi(t)+αi
∑
l∈V ∂lgi

(
z(i)(t)

)
εl(t)

with ∂lgi
(
z
)

= 1
2

[
b̃ile

zl∑
j∈V b̃ije

zj
+ b̃lie

−zl∑
k∈V b̃kie

−zk

]
,∀z ∈ RN .

Let A(t) = [aij(t)] satisfy aii(t) = 1−αi, ∀i ∈ V , aij(t) =
αi∂jgi

(
z(i)(t)

)
,∀j ∈ N+

i ∪N
−
i ; otherwise aij(t)=0. Then,

ε(t+ 1) = A(t)ε(t). (22)

10
0

10
1

10
2

1.3

1.4

1.5

1.6

1.7

1.8
10

4

0 0.5 1

0

0.5

1

1.5

2
10

4

Fig. 1. (Color online) Left: Convergence of Algorithm 1 and IPM. Right:
Upper bounds (solid lines) and lower bound (dashed line) of I∗ν in Thm. 4.

Moreover, since ∂lgi(z) ≥ 0,∀l ∈ V and
∑
l∈V ∂lgi(z) =

1,∀z ∈ RN ,∀i ∈ V , we have A(t) ≥ 0 and A(t)1 = 1,∀t ≥
0, which means that εi(t+ 1) is always a convex combination
of {εj(t)}j∈V . As a result, the following hold for all t ≥ 0

min
i∈V

εi(t)≤min
i∈V

εi(t+1) ≤ max
i∈V

εi(t+1)≤max
i∈V

εi(t). (23)

Thus, we conclude that {y(t)}t≥0 is a bounded sequence.
Next, we show that {y(t)} converges to some element in

Y ∗. The idea is to show that (22) is a consensus iteration.
Let Ω ⊂ RN be any compact and convex set containing
{y(t)} and y†; boundedness of Ω is possible because of the
boundedness of {y(t)}. Note that z(i)(t) ∈ Ω, since it is a
convex combination of y(t) and y†. Since ∂lgi is continuous
and ∂lgi

(
z
)
> 0 for any i ∈ V, l ∈ N+

i ∪ N
−
i and ∀z ∈ RN ,

minz∈Ω{∂lgi(z)|l∈N+
i ∪N

−
i } is achieved and positive. Thus

γ̃ := mini∈V,z∈Ω{1−αi, αi∂lgi(z) | l ∈ N+
i ∪N

−
i } > 0.

Hence, aij(t) ≥ γ̃ whenever aij(t) > 0. The graph GA(t)
generated by A(t) is connected, and the weight of every
directed edge is at least γ̃. Thus, consensus is reached as
t→∞; see, e.g., [30]. Here, we can show convergence and a
convergence rate (sharper than the bound in [30]) as follows.

Define Φt,d := A(t+ d− 1)A(t+ d− 2)...A(t) for any
t ≥ 0, where d is the diameter of GA(t). Then Φt,d is a
stochastic matrix (i.e., Φt,d1 = 1), of which each element
(ij) represents the total weight of all paths of length d from
node i to node j, and thus is greater than or equal γ̃d. Now
let ε(t) := mini∈V εi(t) and ε̄(t) := maxi∈V εi(t). Clearly,
{ε(t)} is nondecreasing and {ε̄(t)} is nonincreasing; see (23).
Denote by k the index satisfying εk(t) = ε(t). By (22),

εi(t+d) =
∑
j∈V\{k}[Φt,d]ijεj(t) + [Φt,d]ikεk(t)

≤
(∑

j∈V\{k}[Φt,d]ij
)
ε̄(t) + [Φt,d]ikε(t)

=
(
1− [Φt,d]ik

)
ε̄(t) + [Φt,d]ikε(t)

≤ (1− γ̃d)ε̄(t) + γ̃dε(t).

Similarly, we have εi(t+d) ≥ γ̃dε̄(t) + (1 − γ̃d)ε(t). Thus,
ε̄(t+d)−ε(t+d) ≤ (1−2γ̃d)

(
ε̄(t)−ε(t)

)
. Since ε̄(t)−ε(t) is

positive and nonincreasing (see (23)), we conclude that ε̄(t)−
ε(t) decays to 0 geometrically at a rate bounded above by (1−
2γ̃d)

1
d . Thus ∃c ∈ R such that limt→∞ ε̄(t) = limt→∞ ε(t) =

limt→∞ εi(t) = c, i.e., limt→∞ y(t) = y†+c1 := y∗. Clearly,
y∗ ∈ Y ∗. Moreover, it can be seen that the convergence is also
geometric with rate (1− 2γ̃d)

1
d .

Finally, since y∗ ∈ Ȳ and the above argument holds for
any y†∈Y ∗, the convergence rate can be refined by selecting
y†∈ Ȳ . Thus, Ω= Ȳ and γ̃=γ, as in the theorem statement.

REFERENCES

[1] M. E. Newman, “Spread of epidemic disease on networks,” Phys. Rev.
E, vol. 66, no. 1, p. 016128, 2002.

[2] M. Boguná and R. Pastor-Satorras, “Epidemic spreading in correlated
complex networks,” Phys. Rev. E, vol. 66, no. 4, p. 047104, 2002.

[3] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, “Epidemic
spreading in real networks: An eigenvalue viewpoint,” in Proc. 22nd
Int. Symp. Reliable Dist. Syst., 2003, pp. 25–34.

[4] M. Garetto, W. Gong, and D. Towsley, “Modeling malware spreading
dynamics,” in Proc. IEEE 22th Annu. Conf. Comp. Comm. Societies,
vol. 3, 2003, pp. 1869–1879.

[5] A. Ganesh, L. Massoulié, and D. Towsley, “The effect of network
topology on the spread of epidemics,” in Proc. IEEE 24th Annu. Conf.
Comp. Comm. Societies, vol. 2, 2005, pp. 1455–1466.

[6] P. Van Mieghem, J. Omic, and R. Kooij, “Virus spread in networks,”
IEEE/ACM Trans. Net., vol. 17, no. 1, pp. 1–14, 2009.

[7] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani,
“Epidemic processes in complex networks,” Rev. Mod. Phys., vol. 87,
no. 3, p. 925, 2015.

[8] C. Nowzari, V. M. Preciado, and G. J. Pappas, “Analysis and control
of epidemics: A survey of spreading processes on complex networks,”
IEEE Contr. Syst., vol. 36, no. 1, pp. 26–46, 2016.

[9] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos,
“Epidemic thresholds in real networks,” ACM Trans. Inf. Syst. Secur.,
vol. 10, no. 4, p. 1, 2008.

[10] A. Khanafer, T. Başar, and B. Gharesifard, “Stability of epidemic models
over directed graphs: A positive systems approach,” Automatica, vol. 74,
pp. 126–134, 2016.

[11] R. Cohen, S. Havlin, and D. Ben-Avraham, “Efficient immunization
strategies for computer networks and populations,” Phys. Rev. Lett.,
vol. 91, no. 24, p. 247901, 2003.

[12] Y. Wan, S. Roy, and A. Saberi, “Designing spatially heterogeneous
strategies for control of virus spread,” IET Syst. Bio., vol. 2, no. 4,
pp. 184–201, 2008.

[13] C. Borgs, J. Chayes, A. Ganesh, and A. Saberi, “How to distribute
antidote to control epidemics,” Random Struct. Algor., vol. 37, no. 2,
pp. 204–222, 2010.

[14] E. Gourdin, J. Omic, and P. Van Mieghem, “Optimization of network
protection against virus spread,” in 8th Int. Workshop Design Reliable
Comm. Netw., 2011, pp. 86–93.

[15] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. Pappas,
“Optimal vaccine allocation to control epidemic outbreaks in arbitrary
networks,” in IEEE 52nd Conf. Decision Contr., 2013, pp. 7486–7491.

[16] ——, “Optimal resource allocation for network protection against
spreading processes,” IEEE Trans. Contr. Netw. Syst., vol. 1, no. 1, pp.
99–108, 2014.

[17] K. Drakopoulos, A. Ozdaglar, and J. N. Tsitsiklis, “An efficient curing
policy for epidemics on graphs,” IEEE Trans. Netw. Sci. Eng., vol. 1,
no. 2, pp. 67–75, 2014.

[18] J. Liu, P. E. Paré, A. Nedić, C. Y. Tang, C. L. Beck, and T. Başar,
“On the analysis of a continuous-time bi-virus model,” arXiv preprint
arXiv:1603.04098, 2016.

[19] S. Ottaviano, F. De Pellegrini, S. Bonaccorsi, and P. Van Mieghem,
“Optimal curing policy for epidemic spreading over a community
network with heterogeneous population,” J. Complex Netw., p. cnx060,
2017.

[20] P. E. Paré, J. Liu, C. L. Beck, A. Nedić, and T. Başar, “Multi-competitive
viruses over static and time-varying networks,” in American Contr. Conf.
IEEE, 2017, pp. 1685–1690.

[21] C. Enyioha, A. Jadbabaie, V. Preciado, and G. J. Pappas, “Dis-
tributed resource allocation for epidemic control,” arXiv preprint
arXiv:1501.01701, 2015.

[22] E. Ramı́rez-Llanos and S. Martı́nez, “Distributed discrete-time optimiza-
tion algorithms with applications to resource allocation in epidemics
control,” Optim. Control Appl. Methods, pp. 1–21, 2017.

[23] P. Van Mieghem and J. Omic, “In-homogeneous virus spread in net-
works,” arXiv preprint arXiv:1306.2588, 2013.

[24] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[25] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Prentice Hall Englewood Cliffs, NJ, 1989.

[26] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, pp. 65–78, 2004.

[27] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and
negative links in online social networks,” in Proc. 19th Int. Conf. on
World Wide Web, 2010, pp. 641–650.

[28] J. Currie and D. I. Wilson, “Opti: lowering the barrier between open
source optimizers and the industrial matlab user,” Foundations of
computer-aided process operations, vol. 24, p. 32, 2012.

[29] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press,
1985.

[30] V. Blondel, J. Hendrickx, A. Olshevsky, and J. Tsitsiklis, “Convergence
in multiagent coordination, consensus, and flocking,” in Proc. 44th IEEE
Conf. Decision Contr., 2005, pp. 2996–3000.

