

Dehydration of natrojarosite

Quantitative Phase Analysis (QPA)

Nicola V. Y. Scarlett and Ian C. Madsen CSIRO Process Science & Engineering Box 312, Clayton South 3169, Victoria, Australia nicola.scarlett@csiro.au

APD-IV | April 2013 www.csiro.au

"The uncertainty of the quantitative determination of phase composition by X-ray diffraction is seldom less than several percent absolute"*

Is this still true?

*Andre Guinier ("Theorie et Technique de la Radiocristallographie," Dunod, Paris 1956)

QPA via XRD

3 | Accuracy in Powder Diffraction APD-IV | April 2013 | Nicola Scarlett

QPA via diffraction is not new

- Relation of peak intensity to abundance
- Single peak methods from circa. 1919
- Formalised in: Alexander, L.E. and H.P. Klug, X-ray diffraction analysis of crystalline dusts. Analytical Chemistry, 1948. 20: p. 886-894.

- I_x = measured intensity of diffraction line V = volume fraction of phase μ = linear absorption coefficient of specimen C = constant for a given line
- Measurement of pure or known standards allowed determination of "absolute" abundances

Application of Rietveld method to QPA

- Whole pattern (Rietveld) methodology extended to QPA in '80s
 - D. L. Bish and S. A. Howard, (1988) J. Appl. Cryst. 21, 86-91 (Rec'd 30/03/1987)
 - O'Connor & Raven (1988) Powder Diffraction, 3(1), 2-6 (Rec'd 31/03/1987)
 - R. J. Hill and C. J. Howard, (1987) J. Appl. Cryst. 20, 467-474 (Rec'd 02/04/1987)
- Standardless method based on assumption that entire sample is crystalline and included in Rietveld model

$$W_{\alpha} = \frac{S_{\alpha}(ZMV)_{\alpha}}{\sum_{k=1}^{n} S_{k}(ZMV)_{k}}$$

 W_{α} = weight fraction of phase, α , in an *n* component mixture S = Rietveld scale factor ZMV = mass and volume of unit cell

Advantages of QPA via XRD

- Direct phase measurement
- Based on *structure* not *chemistry*
 - Polymorphs
- Additional (bonus) information available
 - Crystallite size/strain
 - Solid solution chemistry
 - o Thermal expansion
- Whole pattern (Rietveld) analysis
 - Standardless
 - Can be high precision

Disadvantages of QPA via XRD

Single peak methods

- Strongly affected by any aberrations in data originating from sample preparation, data collection regime or the sample itself
 - Non-representative peak heights/areas
- Whole pattern Rietveld
 - Generally returns *relative* abundances
 - o Generally limited to well-defined crystalline species
 - Accuracy difficult to determine
 - Semi-quantitative???

Disadvantages of QPA via XRD

Single peak methods

- Strongly affected by any aberrations in data deriving either instrumentation or sample related
 - Non-representative peak heights/areas
- Whole pattern Rietveld
 - Generally returns relative abundances
 - Generally limited to well-defined crystalline species??
 - Not necessarily

Determination of Amorphous Content

Or: "What's that funny shape in my background?"

What is an Amorphous Solid ?

- Pecharsky & Zavalij (2009):
 - "Crystalline materials are frequently characterized as solids with fixed volume, fixed shape, and long-range order bringing about structural anisotropy, producing sharp diffraction peaks"
 - "Amorphous (or non-crystalline) materials are thus solids with fixed volume, fixed shape, characterized by short-range order, which, however, may also have loose long-range order"
 - This definition embraces disordered materials possessing only one- or twodimensional, or lesser, degrees of order
- Klug & Alexander (1974):
 - "The term, amorphous solid, must be reserved for substances that show no crystalline nature whatsoever by any of the means available for detecting it"

Quantifying Amorphous Phases

- There is no clear dividing line between crystalline and amorphous materials
 - "short" and "long" range order are arbitrary terms
- The ability to detect and characterize ordering is dependent upon the principles of the analytical method and models being used
- Conventional X-ray diffraction loses its power for crystalline material structures on the nano-scale, diffraction patterns become broad and features are less defined
 - Resulting ambiguities are paraphrased in literature by the term
 "X-ray amorphous" to highlight the limitations of X-ray diffraction

Accuracy of different analytical methods

- Prepare a set of synthetic mixtures inc. amorphous
- Collect lab-based XRD data
- Data analysis methods used
- <u>Indirect</u> analyse crystalline components – put on absolute scale – calculate amorphous content by difference
- <u>Direct</u> estimate amorphous contribution to pattern
 - Calibrate using known standards, or
 - Include in whole sample analysis

- Samples have constant chemistry → constant μ_m
 - Possible to apply simple linear calibration models

Madsen, I.C., Scarlett, N.V.Y. and Kern, A. (2011) Z. Kristallogr., 226, 944-955

Indirect methods

- Internal standard
- Requires addition of standard of known crystallinity to each sample

External standard

 Requires measurement of standard of known crystallinity under identical conditions to unknowns

Direct methods

- Single peak & linear calibration method (LCM)
 - Requires calibration suite
 - Requires amorphous contribution to be "visible" within background
- PONKCS (Partial or No Known Crystal Structure) phase
 - Requires empirical determination of *ZMV* constant for amorphous component. (*Note method also applicable to crystalline materials*)
 - Requires a single calibration sample incorporating standard of known crystallinity
- DoC (degree of crystallinity)
 - Requires estimation of total intensity contributed by crystalline and amorphous components
- Structure
 - Requires a crystal structure which models peak positions and intensities of amorphous component

Average bias (measured-weighed)

Vertical lines represent the standard deviation of the mean

CSIR

Quantifying Amorphous Phases

- All methods capable of determining amorphous material in mixtures in similar fashion to crystalline phases
 - Calibration methods most accurate
 - Amorphous "structure" least accurate
- Possibility of amorphous content frequently ignored in Rietveld analysis
 - If amorphous and/or unidentified phases not mentioned assume relative phase abundances
 - Intensity contributions of amorphous phases not always evident, especially at low concentrations

A cautionary tale...

- During the amorphous study crystal structure refinements were undertaken on data from the pure crystalline phases of quartz and corundum
 - Refined atomic displacement parameters (ADPs) for corundum were within 1-2 SD of literature values
 - ADPs for quartz significantly higher
 - 0.83 Å² for Si (~0.4 Å² reported)
 - 1.24 Å² for O (~0.4 Å² reported)
- Refined ADPs improved fit of model
 - R_{wp} from 9.54 to 7.79%
 - R_{Bragg} from 6.32 to 3.83

A cautionary tale...

- Any factor which correlates with the Rietveld scale factor can have an impact on accuracy
 - ADPs correlate strongly with the Rietveld scale factor
 - ADP values used will impact on QPA
- All data reanalysed using refined ADP values for quartz and literature values for corundum
 - Internal standard method shown

Bias vs Amorphous Content

Quartz ADP's Set to Single Crystal Values

Bias vs Amorphous Content

Quartz ADP's Set to Refined Values

What has happened?

- Quartz scale factor has increased to compensate for "loss" of calculated intensity due to higher ADPs
- Increase in weight fraction quartz analysed
- Decrease in amorphous content determined by difference
- Why are the refined ADPs so much higher than the literature values as they are apparently incorrect?

Intensity Variation with ADPs

XRD Data (Cu Kα) for Corundum

- Fairly uniform distribution of intensity as a function of 2θ
- Strong observed intensity at high angles to stabilise refinement of parameters with high angular dependence (i.e., ADPs)

XRD Data (Cu Kα) for Quartz

- A few low angle peaks dominate the intensity distribution
- Parameters which vary as a function of 2θ will be sensitive to small changes in intensity of low angle peaks

Very real problem

- Many database structures do not include ADPs or they are set to arbitrary values (say 0.5 or 1.0 Å²)
 - Conversion of *CIF* file to structure file in TOPAS assigns unity to ADPs if they are missing
- Incorrect values of ADPs has significant impact on QPA using these structures
 - Verification of database or refined values necessary to obtain highest accuracy of QPA

★ Non-trivial task ★

Issues in Precision and Accuracy

Estimating Errors in QPA

26 | Accuracy in Powder Diffraction APD-IV | April 2013 | Nicola Scarlett

- The issue of precision and accuracy in QPA via XRD is a difficult one
- How are errors actually determined?
- What, if any, errors are reported?
- o Research
- Industry
- Determination of actual accuracy is not simple
 - Needs recourse to some other measure of the sample

- Literature commonly reports errors on QPA with no mention of how they have been obtained
 - Example: A. Analyst and A.N. Other; *J. Irrepr. Results*. (2010)*

Data collected from 15-85°20

Table 4. Weight-percentages of the phases preser Rietveld analysis.

-								
Sample	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)
				2.0(±0.2)	0.6(±0.2)	9.6(±0.1)	19.4(±0.4)	68.9(±0.4)
	2.5(±0.2)		3.8(±0.3)			5.8(±0.1)	15.5(±0.3)	72.4(±0.4)
	10.8(±0.3) 6.7(±0.3)	6.3(±0.2)	23.9(±0.6)				2.1(±0.3)	80.9(±0.4) 69.3(±0.4)

What is being refined?? Eg, inadequate range

s as determined from the

for thermal parameters – will affect QPA.

* Names changed to protect the guilty

Another cautionary tale...

- Consider Sample 4 from the IUCr CPD round robin^{*}
- Mass absorption coefficients for commonly used wavelengths

	СоКа	СиКа	МоКа
Al ₂ O ₃	48	32	0.1
Fe ₃ O ₄	44	230	26
ZrSiO ₄	117	82	9

All wavelengths produce some degree of absorption contrast
 Microabsorption problem

*Discussed in more detail later

- Analysed using CuKα radiation
- 3 replicates measured
 - Repacked, data recollected
- Good fit between observed and calculated patterns
 - Low R-factors
 - Rwp 10.7 %
 - RBragg
 - Corundum 2.5 %
 - Magnetite 2.2 %
 - Zircon 4.1 %

3 replicates of IUCr CPD Round Robin Sample 4

	Al ₂ O ₃	Fe ₃ O ₄	ZrSiO ₄
Mean Analysed wt% (n=3)	56.52	17.06	26.42
Mean Rietveld error	0.15	0.11	0.11

- Results often quoted as Rietveld wt% ± Rietveld error
 - Corundum 56.5(2) Magnetite 17.1(1) Zircon 26.4(1)
- Rietveld errors only indicate *how well the model is fitting* the observed diffraction pattern

3 replicates of IUCr CPD Round Robin Sample 4

	Al ₂ O ₃	Fe ₃ O ₄	ZrSiO ₄
Mean Analysed wt% (n=3)	56.52	17.06	26.42
Mean Rietveld error	0.15	0.11	0.11
S.D. of Analysed wt%	0.63	0.41	0.35

- If replicates are done (rare) results may be quoted as Rietveld wt% ± SD of mean
 - Corundum 56.5(6) Magnetite 17.1(4) Zircon 26.4(4)
- Replication errors only indicate the *precision* of the measurement

3 replicates of IUCr CPD Round Robin Sample 4

	Al ₂ O ₃	Fe ₃ O ₄	ZrSiO ₄
Mean Analysed wt% (n=3)	56.52	17.06	26.42
Mean Rietveld error	0.15	0.11	0.11
S.D. of Analysed wt%	0.63	0.41	0.35
XRF	50.4(2)	19.6(1)	29.5(1)
Weighed	50.46	19.46	29.90
Mean of bias (measured – weighed)	6.06	-2.58	-3.48

True errors only available if answer already known

• Corundum 56(6) Magnetite 17(3) Zircon 26(3)

Community Assessment

International round robins

International round robins

- Quantitative phase analysis of αand β-silicon nitrides. II. Round robins
 - H. Toraya, S. Hayashia and T. Nakayasu;
 J. Appl. Cryst. (1999), 32, 716-729
- International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis
 - Madsen et al; J. Appl. Cryst. (2001). 34, 409-426
 - Scarlett, N. V. Y et al. J. Appl. Cryst. (2002), 35, 383–400.

- Reynolds Cup
 - Clay mineralogy
- Round robin on Rietveld quantitative phase analysis of Portland cements
 - L. León-Reina et al; J. Appl. Cryst. (2009), 42, 906–916
- International Centre for Diffraction Data round robin on quantitative Rietveld phase analysis of pharmaceuticals
 - T. G. Fawcett, F. Needham, J. Faber, and C. E. Crowder; Powder Diffraction, (2010) 25 (1), 60-67.

- Quantitative phase analysis of α- and β-silicon nitrides. II. Round robins
 - 42 selected participants
 - Second round robin subset of initial group of participants
 - Comparison of prescribed analytical methods to determine accuracy and precision for use as Japanese Industrial Standard (JIS) method
 - Mean normalised intensity using:
 - Peak height (MNI-P)
 - Integrated intensity (MNI-I)
 - Rietveld methods
 - Participant collected data

- International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis
 - o 80 participants
 - o 7 samples
 - 6 synthetic
 - 1 natural
 - CPD-supplied data
 - Participant collected data
 - Analysis methods to be determined by participants

- Reynolds Cup
- Biennial
- Synthetic clay samples
- Detailed presentation from Mark Raven following in this session

- Round robin on Rietveld quantitative phase analysis of Portland cements
 - o 2 Synthetic samples
 - Accuracy and precision
 - o 3 commercial samples
 - Precision
 - 9 participants
 - Analysis methods to be determined by participants

- International Centre for Diffraction Data round robin on quantitative Rietveld phase analysis of pharmaceuticals
 - o 11 participants
 - Participant collected data
 - Analysis methods to be determined by participants

Factors affecting accuracy

How well are they being addressed?

State of the art

- Last APD meeting (2001) detailed the "International Union of Crystallography (IUCr) Commission on Powder Diffraction (CPD) round robin on the determination of quantitative phase abundance from diffraction data"
- Overarching aims:
- To survey methods and strategies employed
 - Data collection
 - Analysis
- To assess levels of accuracy, precision and lower limits of detection achieved

State of the art

- Two levels of investigation
- Ability to analyse data provided by the CPD
- Ability to collect and analyse own data
- Range of sample types covering typical XRD/QPA problems
 - Sample 1 simple
 - 8 composition mixes of corundum (Al₂O₃), fluorite (CaF₂ and zincite (ZnO)

- Sample 2 preferred orientation

 ²
 ²
- Sample 3 amorphous content

• Sample 4 – microabsorption

- Complex mineral suites
 - Synthetic
 - Natural
- Pharmaceutical

State of the art

Factors affecting accuracy

Basic case

- Simple mixture or crystalline materials
- Relatively free from sample related issues
 - Preferred orientation
 - Amorphous Content
 - Microabsorption
- Ideal case for benchmarking technique
 - Data collection
 - Data analysis

Basic case

- IUCr-CPD RR Sample 1
 - Ternary design
 - Crystalline phases
 - Corundum
 - Fluorite
 - Zincite
 - Chemically distinct phases
 - QPA may be achieved via analysis of bulk chemistry

Basic case

- Verification
 - Results of assorted QPA test methods
 - Diffraction
 - Single peak
 - Whole pattern
 - XRF
 - Note that each group represents 24 separate analyses
 - 8 analytical methods

100

3 replicates of each

Basic case

CPD-supplied data

Participant-collected data

CSIRC

Issues with data collection

- Data collection regimes not prescribed
- Participant data collection conditions not fully known
- Effect of step size and data collection time on accuracy examined using CPD RR1

Effect of Step Width & Time on QPA

Estimating Errors in QPA

51 | Accuracy in Powder Diffraction APD-IV | April 2013 | Nicola Scarlett

Data Collection Design

- CPD RR1 (8 compositions)
- Step width (°2θ)
 - **o** 0.01
 - **o** 0.05
 - **o** 0.10
 - **o** 0.15
 - **o** 0.20
 - 0.25
 - **o** 0.30

- Time per step (seconds)
 - 0.0125
 - **o** 0.05
 - 0.2
- Time is varied by a factor of approx. four to give a two-fold variation in counting statistics
- Total of 280 datasets

Factors affecting refinement stability

Sample absorption

• Samples with high average MAC produce fewer counts/sec/wt%

Scattering Factor

- A phase of low average atomic number \rightarrow fewer counts/sec/wt%
 - Analysis more unstable than a phase with higher average atomic number

Phase Abundance

• A phase present at low concentration will be more unstable with poor quality data than a high concentration phase

Data Stability Results

- The worst case to examine is Sample 1A
 - Al₂O₃ (the weakest scatterer) occurs its lowest level 1.2 wt% with 4.1 wt% ZnO and 94.1 wt% CaF₂ (strongest absorber)
 - Microabsorption issue here as well
- Bias calculated relative to the analysed wt% from the best data, i.e., 4 sec/step, 0.01°/step

$$Bias = \frac{100 * (Meas_i - Meas_{best})}{Meas_{best}}$$

- Replication error determined from repeat analysis
 - For corundum, the replication error is 0.07wt% = 5.2% relative
 - $\circ~$ For 2 e.s.d.'s, a bias of approximately $\pm 10\%$ relative can be tolerated

Corundum Bias

• Above ~1s/step, effect of step time not as significant as step width

Corundum Bias

• A = 16 hours; B = 1 hour 14 minutes

Fourier Analysis

- Cut-off defined (arbitrarily) for cumulative sum at 0.95
- Little additional information to be gained by using smaller step width
- Good agreement with previous plot

Trap for the unwary...

R_{wp} is more dependent on step time than number of data points
 Little indication of accuracy

Step width and time summary

- Large areas of step time / width combinations exist where there is no significant improvement in QPA
- At very short step times, changes in step width have little effect on QPA
- At longer step times, step width dominates the effect on QPA
- Reliance upon Rwp as the sole measure of fit is dangerous
- Reducing the number of data points has little effect on Rwp whilst the QPA can become unstable

Sample 2 (🕵 🦿) – preferred orientation

- Mean values close to weighed values
- Large spread of values
- PO Correction (March-Dollase, spherical harmonics) used

Mean CPD-supplied data; mean Participant-collected data; X = weighed, | = min; max, number = SD

Sample 3 (🥷 🥷 🌾) – amorphous content

- Mean values close to weighed values
- Large spread of values
- Some participants failed to calculate amorphous content following analysis of crystalline component (corrected values presented)

Mean CPD-supplied data; mean Participant-collected data; X = weighed, = min; max, number = SD

Sample 4 (🙀 🤻 🤻 🤻 🤻 🦿) - microabsorption

- Corundum (low absorber) overestimated
- Zircon & magnetite (high absorbers) underestimated
- Large spread of values
- CPD-supplied data worse as collected from coarse grained sample

Mean CPD-supplied data; mean Participant-collected data; X = weighed, = min; max, number = SD

- Large spread of values
- CPD-supplied data worse as sample agglomerated
 - Gibbsite particles "coated" with other phases and consequently underestimated

Mean CPD-supplied data; mean Participant-collected data; X = weighed, | = min; max, number = SD

What went wrong?

- Generally larger spread of results from participant collected data than from CPD-supplied*
- o Instrumental configuration
- Data collection strategies
- Use of inappropriate RIR values in single peak methods
- Excessive correction for microabsorption when not necessary
- Lack of crystallographic expertise
- Lack of understanding of program operation and/or interpretation of the output

*Exceptions being Sample 4 and synthetic bauxite which required additional sample preparation

What went wrong?

- General operator error
- Incorrect thermal parameters
 - Several participants set values of zero which were not refined
- Incorrect atom coordinates
- Incorrect space group
- Omission of phases (despite being told what was in there...)
- Misreporting values from Rietveld output!!!
- Stopping refinement prior to convergence
- Failure to refine or adequately restrain refinement of parameters
 - Acceptance of physically unrealistic refined values

And the other round robins?

- Portland cement (9 participants)
 - Statistical study to determine precision ranges and general uncertainties for accuracy

	C3S	C2S	C3A	C4AF
Typical conc. (%)	60-70	14-20	8-10	8-10
% Uncertainty (95% conf. lim.)	4.1-6.5	2.8-5.5	0.9-2.5	1.3-2.4
% Reproducibility r.s.d. = 100(s.d./mean)	3.2-5.4	8.8-28.8	10.3-26.9	9.6-17.5

And the other round robins?

- ICDD pharmaceutical (11 participants)
 - Nearly 10 years later, same issues as IUCr CPD round robin
 - Sample preparation
 - Data collection
 - Operator error
- However, there is hope!
- 4 out the 11 participants achieved excellent results
 - "Suggests that the technique is robust and standardized practices would be expected to yield reproducible accuracy and precision."

Summary

Where to from here?

Overall

- Determination of <u>accuracy</u> not always possible
- Especially for high throughput labs, one-off samples, etc
- Precision may be determined
 - Adequate time/money for replicates
- Awareness of limitations
 - Microabsorption may not be avoided but awareness of the effect gives indication of over/underestimated phases
- Best data collection and analytical practice can, however, maximise achievable accuracy
 - Still semi-quantitative without external confirmation
 - Calibration methods may help for multiple samples of similar concentration/composition

"The uncertainty of the quantitative determination of phase composition by X-ray diffraction is seldom less than several percent absolute"*

Is this still true?

*Andre Guinier ("Theorie et Technique de la Radiocristallographie," Dunod, Paris 1956)

Community assessment over 10+ years

	Approx. spread in absolute bias (%)				
Approx. conc. Level (%)	CPD-supplied data RR1	Cement	Pharmaceutical		
1	0.2-0.4				
5	0.7-1	0.12			
10					
15		3-6	10-30		
20		4-8			
	2-3				
50	2-3		20-40		
70		0.4-7			
85			9-20		
95	1-2				

Absolute Bias = Abs((mean±1SD)-weighed)

How do we make this better?

- Same problems as identified in IUCr CPD round robin 10+ years ago
- Continued education required
 - Best practices
 - Awareness of limitations
- Pharmaceutical round robin shows 4 out of 11 labs obtained high accuracy and precision
 - It can be done
- Independent analysis of IUCr CPD round robin samples show high accuracy and precision can be obtained
- It can be done
- Development of standard, system-specific procedures
- Prescriptive round robins like SiN method development study to determine and test Japanese Industrial Standard (JIS) method
- Standard methods in place in some automated industrial labs
Nicola V.Y. Scarlett

CSIRO Process Science & Engineering Box 312, Clayton South 3169, Victoria, Australia nicola.scarlett@csiro.au Web: www.csiro.au/CPSE

www.csiro.au