
 

To Whom It May Concern, 

 

In light of the growing number of reported software supply chain attacks and to aid NIST 

in evaluating and improving its Cybersecurity Framework, related documents and 

initiatives, this comment makes three suggestions. 

 

Suggestion #1: Emphasize an “enlightened ecosystem” approach over a “single 

organization” approach to software supply chain security. The enlightened ecosystem 

approach calls for an organization to not only understand its software dependencies, 

especially its open source software dependencies, but to use its financial resources and 

staff to actively contribute to upstream open source projects and proactively manage 

security at the ecosystem level. 

 

The enlightened ecosystem approach calls on organizations to reinforce the digital 

infrastructure being upheld by, to quote the popular web comic xkcd, “some random 

person in Nebraska.” [xkcd 2020] ]The Cybersecurity Framework understandably 

emphasizes the perspective of one single organization such as a company or 

government agency. This perspective, like all perspectives, highlights some aspects of 

reality while omitting others. It’s our view that the “single organization” approach has 

grown increasingly inadequate and can mislead an organization into believing that 

simply inventorying its software dependencies and remediating vulnerabilities is an 

optimal approach to software supply chain security. Calling out the benefits of an 

ecosystem approach is more likely to help those parties trying to make the case to their 

organization’s leadership that they should support such efforts. It will therefore be easier 

for those concerned with software supply chain security efforts to join and contribute to 

cross-industry groups such as the Open Source Security Foundation and open source 

software security projects such as Sigstore or SLSA. [sigstore; SLSA] 

 

Suggestion #2: Emphasize software integrity as a foundational prerequisite for software 

security. In line with the recommendations of NIST’s Secure Software Development 

Framework, protecting software from tampering logically precedes reducing and 

remediating vulnerabilities. 

 

Identifying and remediating unintentional vulnerabilities is essential work. Any vision of a 

secure software supply chain demands it. But no amount of hunting for unintentional 

vulnerabilities will protect the world’s software consumers and producers from the 

harms of a software supply chain that lacks integrity. Should malicious parties be able to 

tamper with software during the development, build, or publishing process, severe harm 

to consumers and producers can still result. The Secure Software Development 

Framework version 1.1., especially its “Protect the Software” group, recognizes this 



 

reality. Unfortunately, there have been and still exist many impediments to enforcing 

integrity in the software supply chain, issues sometimes overlooked because of the 

current focus on creating an inventory of dependencies and remediating known 

unintentional vulnerabilities. This concern over software integrity isn’t theoretical. 

According to at least one dataset of software supply chain compromises, there have 

been, depending on the methodology, somewhere between 62 and 137 known 

malicious compromises of software integrity (i.e. attacks on source, build, and 

publishing infrastructure). [Geer et al, 2020] Projects like Sigstore, which make code 

signing and attestation easier, are examples of methods for improving the integrity of 

the software supply chain. 

 

Suggestion #3: Promote market competition in software security by, at a minimum, 

calling out the harmful effect of anti-competitive “DeWitt clauses” that stifle 

benchmarking. Some software security product providers include terms in the license 

that prevent others from publishing the results of benchmarking without the tool 

creator’s permission, harming society and international security. (Wheeler, 2021) 

 

For instance, our organization has had to undertake its own benchmarking activities of 

commercial malware detection software given the lack of published results comparing 

effectiveness, the intended result of these anti-competitive clauses. Similarly, when it 

comes to software supply chain security, including both malicious compromise and 

unintentional vulnerabilities, there is a noticeable lack of publicly-released benchmarks 

comparing, for instance, commercial security static analysis or dynamic analysis tools. 

This lack is the inevitable result of DeWitt clauses. And this lack hurts the security of the 

software supply chain by slowing the spread of helpful tools and practices. 

 

References 

 

Geer, Dan, Bentz Tozer, and John Speed Meyers, “Counting Broken Links: A Quant’s 

View of Software Supply Chain Compromises,” USENIX ;login:, December 2020. 

 

Munroe, Randall, xkcd #2347, August 2020, available at https://xkcd.com/2347/, 

accessed March 16, 2022. 

 

sigstore, project website, https://www.sigstore.dev/, accessed March 16, 2022. 

 

SLSA, project website, https://slsa.dev/, accessed March 16, 2022. 

 

https://xkcd.com/2347/
https://www.sigstore.dev/
https://slsa.dev/


 

Wheeler, David A., “The DeWitt Clause’s Censorship Should be Illegal,” Personal Blog, 

2021, available at https://dwheeler.com/essays/dewitt-clause.html, accessed March 16, 

2022. 

https://dwheeler.com/essays/dewitt-clause.html

