
The DL POLY Classic User Manual

W. Smith, T.R. Forester and I.T. Todorov

STFC Daresbury Laboratory
Daresbury, Warrington WA4 4AD

Cheshire, UK

Version 1.10, January 2017

c⃝STFC Preface

About DL POLY Classic

DL POLY Classic is a parallel molecular dynamics simulation package developed at Daresbury
Laboratory by W. Smith, T.R. Forester and I.T. Todorov under the auspices of the Engineering
and Physical Sciences Research Council (EPSRC) for the EPSRC’s Collaborative Computational
Project for the Computer Simulation of Condensed Phases (CCP5) and the Computational Science
and Engineering Department at Daresbury Laboratory. The package is the copyright of the Science
Facilities Research Council (STFC) of the United Kingdom. DL POLY Classic is derived from the
DL POLY 2 package, written by W. Smith and T.R. Forester.

DL POLY Classic is issued free under a BSD licence, under the terms of which the source code
may be freely modified and distributed as long as the copyright statements in the code are retained
and proper acknowledgement is made of the authors and Daresbury Laboratory as the place of
origin.

The purpose of the DL POLY Classic package is to provide software for scientific research that
is free, accessible and documented.

i

c⃝STFC Preface

Disclaimer

None of the authors, nor any of the organisations STFC, EPSRC, CCP5 nor any contributor
to the DL POLY Classic package or its derivatives guarantee that the software and associated
documentation is free from error. Neither do they accept responsibility for any loss or damage that
results from its use. The responsibility for ensuring that the software is fit for purpose lies entirely
with the user.

ii

c⃝STFC Preface

DL POLY Classic Acknowledgements

DL POLY Classic was developed under the auspices of the Science and Technology Facilities
Council, the Engineering and Physical Sciences Research Council, and the former Science and
Engineering Research Council, under grants from the Computational Science Initiative and the
Science and Materials Computing Committee.

Advice, assistance and encouragement in the development of DL POLY Classic has been given
by many people. We gratefully acknowledge the comments, feedback and bug reports from the
CCP5 community in the United Kingdom and throughout the world. In addition we thank the
following people for contributing code to the package.

1. Maurice Leslie contributed the NOSQUISH rotational algorithm at the heart of many of the
rigid body routines.

2. The hyperdynamics algorithms in DL POLY Classic were developed in a collaboration with
Duncan Harris and John Harding at the University of Sheffield and formerly the University
of London.

3. The solvation, free energy and solvent induced spectral shift features were developed in collab-
oration with P.-A. Cazade, P. Bordat and R. Brown at the University of Pau. Travel between
Pau and Daresbury by the collaborators was enabled by a grant from the Franco-British
Alliance fund.

4. The metadynamics features were developed by David Quigley and Mark Rodger at the Uni-
versity of Warwick.

iii

c⃝STFC Preface

Manual Notation

In the DL POLY Classic User Manual specific fonts are used to convey specific meanings:

1. directories - itallic font indicate linux file directories

2. routines - small capitals indicate subroutines, functions and programs.

3. macros - sloped text indicates a macro (file of linux commands)

4. directive - bold text indicates directives or keywords

5. variables - typewriter text indicates named variables and parameters

6. FILE - large capitals indicate filenames.

iv

Contents

The DL POLY Classic User Manual a
About DL POLY Classic . i
Disclaimer . ii
Acknowledgements . iii
Manual Notation . iv

Contents v

List of Tables x

List of Figures xi

1 Introduction 1
1.1 The DL POLY Classic Package . 3
1.2 Functionality . 3

1.2.1 Molecular Systems . 3
1.2.2 The DL POLY Classic Force Field . 4
1.2.3 Boundary Conditions . 4
1.2.4 The Java Graphical User Interface . 5
1.2.5 Algorithms . 5

1.3 Programming Style . 6
1.3.1 Programming Language . 6
1.3.2 Memory Management . 6
1.3.3 Target Computers . 6
1.3.4 Version Control System (CVS) . 6
1.3.5 Required Program Libraries . 6
1.3.6 Internal Documentation . 6
1.3.7 Subroutine/Function Calling Sequences . 7
1.3.8 FORTRAN Parameters . 7
1.3.9 Arithmetic Precision . 7
1.3.10 Units . 7
1.3.11 Error Messages . 8

1.4 The DL POLY Classic Directory Structure . 8
1.4.1 The source Sub-directory . 8
1.4.2 The utility Sub-directory . 9
1.4.3 The data Sub-directory . 9
1.4.4 The execute Sub-directory . 9
1.4.5 The build Sub-directory . 9
1.4.6 The java Sub-directory . 9

v

c⃝STFC Contents

1.5 Obtaining the Source Code . 9
1.6 Other Information . 10

2 Force Fields and Algorithms 11
2.1 The DL POLY Classic Force Field . 13
2.2 The Intramolecular Potential Functions . 15

2.2.1 Bond Potentials . 15
2.2.2 Distance Restraints . 17
2.2.3 Valence Angle Potentials . 17
2.2.4 Angular Restraints . 19
2.2.5 Dihedral Angle Potentials . 20
2.2.6 Improper Dihedral Angle Potentials . 22
2.2.7 Inversion Angle Potentials . 23
2.2.8 The Calcite Four-Body Potential . 25
2.2.9 Tethering Forces . 26
2.2.10 Frozen Atoms . 27

2.3 The Intermolecular Potential Functions . 27
2.3.1 Short Ranged (van der Waals) Potentials . 28
2.3.2 Three Body Potentials . 30
2.3.3 The Tersoff Covalent Potential . 31
2.3.4 Four Body Potentials . 34
2.3.5 Metal Potentials . 34
2.3.6 External Fields . 41

2.4 Long Ranged Electrostatic (Coulombic) Potentials 42
2.4.1 Atomistic and Charge Group Implementation 43
2.4.2 Direct Coulomb Sum . 43
2.4.3 Truncated and Shifted Coulomb Sum . 44
2.4.4 Damped Shifted Force Coulomb sum . 44
2.4.5 Coulomb Sum with Distance Dependent Dielectric 45
2.4.6 Ewald Sum . 46
2.4.7 Smoothed Particle Mesh Ewald . 48
2.4.8 Hautman Klein Ewald (HKE) . 50
2.4.9 Reaction Field . 52
2.4.10 Dynamical Shell Model . 53
2.4.11 Relaxed Shell Model . 54

2.5 Integration algorithms . 54
2.5.1 The Verlet Algorithms . 54
2.5.2 Bond Constraints . 57
2.5.3 Potential of Mean Force (PMF) Constraints and the Evaluation of Free Energy 59
2.5.4 Thermostats . 59
2.5.5 Gaussian Constraints . 62
2.5.6 Barostats . 63
2.5.7 Rigid Bodies and Rotational Integration Algorithms 67
2.5.8 The DL POLY Classic Multiple Timestep Algorithm 74

2.6 DL POLY Parallelisation . 74
2.6.1 The Replicated Data Strategy . 75
2.6.2 Distributing the Intramolecular Bonded Terms 76
2.6.3 Distributing the Nonbonded Terms . 76
2.6.4 Modifications for the Ewald Sum . 77

vi

c⃝STFC Contents

2.6.5 Modifications for SPME . 78
2.6.6 Three and Four Body Forces . 78
2.6.7 Metal Potentials . 78
2.6.8 Summing the Atomic Forces . 78
2.6.9 The SHAKE, RATTLE and Parallel QSHAKE Algorithms 79

3 Construction and Execution 81
3.1 Constructing DL POLY Classic . 83

3.1.1 Overview . 83
3.2 Compiling and Running DL POLY Classic . 83

3.2.1 Compiling the Source Code . 83
3.2.2 Running DL POLY Classic . 86
3.2.3 Restarting DL POLY Classic . 87
3.2.4 Optimising the Starting Structure . 88
3.2.5 Choosing Ewald Sum Variables . 89

3.3 DL POLY Classic Error Processing . 92
3.3.1 The DL POLY Classic Internal Error Facility 92

4 Data Files 93
4.1 The INPUT files . 95

4.1.1 The CONTROL File . 95
4.1.2 The CONFIG File . 104
4.1.3 The FIELD File . 107
4.1.4 The REVOLD File . 122
4.1.5 The TABLE File . 124
4.1.6 The TABEAM File . 125

4.2 The OUTPUT Files . 127
4.2.1 The HISTORY File . 127
4.2.2 The OUTPUT File . 129
4.2.3 The REVCON File . 132
4.2.4 The CFGMIN File . 132
4.2.5 The REVIVE File . 133
4.2.6 The RDFDAT File . 133
4.2.7 The ZDNDAT File . 133
4.2.8 The STATIS File . 134

5 Solvation 136
5.1 Overview and Background . 138
5.2 DL POLY Energy Decomposition . 138

5.2.1 Overview . 138
5.2.2 Invoking the DL POLY Energy Decomposition Option 139
5.2.3 The SOLVAT File . 139

5.3 Free Energy by Thermodynamic Integration . 141
5.3.1 Thermodynamic Integration . 141
5.3.2 Nonlinear Mixing . 142
5.3.3 Invoking the DL POLY Free Energy Option 144
5.3.4 The FREENG File . 145

5.4 Solution Spectroscopy . 146
5.4.1 Spectroscopy and Classical Simulations . 146
5.4.2 Calculating Solvent Induced Spectral Shifts 146

vii

c⃝STFC Contents

5.4.3 Solvent Relaxation . 147
5.4.4 Invoking the Solvent Induced Spectral Shift Option 147
5.4.5 Invoking the Solvent Relaxation Option . 148

6 Hyperdynamics 149
6.1 Overview of Hyperdynamics . 151
6.2 The Nudged Elastic Band Calculation . 152
6.3 Bias Potential Dynamics . 153

6.3.1 Theory of Bias Potential Dynamics . 153
6.3.2 Running a BPD Simulation . 156
6.3.3 Full Path Kinetics . 156
6.3.4 Things to Be Aware of when Running Full Path Kinetics BPD 159
6.3.5 Exploring Configurational Space . 160

6.4 Temperature Accelerated Dynamics . 160
6.4.1 Theory of Temperature Accelerated Dynamics 160
6.4.2 Running a TAD Simulation . 163
6.4.3 Restarting a TAD Simulation . 166
6.4.4 Things to Be Aware of when Running TAD 167

6.5 DL POLY Classic Hyperdynamics Files . 167
6.6 Tidying Up the Results of a Hyperdynamics Simulation 170

6.6.1 Refining the Results . 170
6.6.2 Treatment of Multiple Maxima in the Reaction Path 171

6.7 Running a Nudged Elastic Band Calculation . 171
6.7.1 Things to be Aware of when Running a NEB Calculation 172

7 Metadynamics 174
7.1 Overview . 176
7.2 Theory of Metadynamics . 176
7.3 Order Parameters . 177

7.3.1 Potential Energy as an Order Parameter . 177
7.3.2 Steinhardt Order Parameters . 178
7.3.3 Tetrahedral Order Parameters . 179
7.3.4 Order Parameter Scaling . 179

7.4 Running Metadynamics Simulations . 179
7.4.1 Additional Considerations . 182
7.4.2 Analysing the Metadynamics Results . 183

8 Path Integral Molecular Dynamics 185
8.1 Overview . 187
8.2 Theory of PIMD . 187
8.3 Path Integral Dynamics . 190
8.4 Invoking the PIMD Option . 193
8.5 PIMD Files . 194

8.5.1 THENEW and THEOLD . 194
8.5.2 RNDNEW and RNDOLD . 195

8.6 Things to be aware of when running a PIMD simulation 195

viii

c⃝STFC Contents

9 Example Simulations 197
9.1 DL POLY Examples . 199

9.1.1 Test Cases . 199
9.1.2 Benchmark Cases . 205

10 Utilities 207
10.1 Miscellaneous Utilities . 208

10.1.1 Useful Macros . 208

Bibliography 213

Appendices 217

A The DL POLY Classic Makefile 217

B Periodic Boundary Conditions in DL POLY Classic 220

C Error Messages and User Action 225

D Subroutine Locations 299

Index 308

ix

List of Tables

4.1 Internal Restart Key . 103
4.2 Internal Ensemble Key . 103
4.3 Internal Trajectory File Key . 103
4.4 Non-bonded force key . 103
4.5 CONFIG file key (record 2) . 106
4.6 Periodic boundary key (record 2) . 106
4.7 Chemical bond potentials . 111
4.8 Valence Angle potentials . 113
4.9 Dihedral Angle Potentials . 114
4.10 Inversion Angle Potentials . 115
4.11 Tethering potentials . 116
4.12 Definition of pair potential functions and variables 118
4.13 Three-body potentials . 119
4.14 Four-body Potentials . 119
4.15 Metal Potential . 120
4.16 Tersoff Potential . 121
4.17 External fields . 122

x

List of Figures

2.1 The interatomic bond vector. 15
2.2 The valence angle and associated vectors . 17
2.3 The dihedral angle and associated vectors . 20
2.4 The L and D enantiomers and defining vectors . 23
2.5 The inversion angle and associated vectors . 23
2.6 The vectors of the calcite potential . 26
2.7 The SHAKE algorithm . 57
2.8 The multiple timestep algorithm . 75
2.9 The parallel implementation of the Brode-Ahlrichs algorithm. 77

4.1 DL POLY Classic standard input and output files 95

6.1 Model Potential Energy Surface. 151
6.2 Basic NEB Theory . 152
6.3 Basic BPD Theory . 154
6.4 Basic TAD Theory . 162

B.1 The cubic MD cell. 221
B.2 The orthorhomic MD cell. 221
B.3 The parallelepiped MD cell. 222
B.4 The truncated octahedral MD cell. 222
B.5 The rhombic dodecahedral MD cell. 223
B.6 The hexagonal MD cell. 224

xi

Chapter 1

Introduction

1

c⃝STFC Section 1.0

Scope of Chapter

This chapter describes the concept, design and directory structure of DL POLY Classic and how
to obtain a copy of the source code.

2

c⃝STFC Section 1.2

1.1 The DL POLY Classic Package

DL POLY Classic [1] is a molecular simulation package designed to facilitate molecular dynamics
simulations of macromolecules, polymers, ionic systems, solutions and other molecular systems on
a distributed memory parallel computer. The package was originally written to support the UK
project CCP5 by Bill Smith and Tim Forester [2] under grants from the Engineering and Physical
Sciences Research Council and is the copyright of the Science and Technology Facilities Council
(STFC).

DL POLY Classic is based on a replicated data parallelism. It is suitable for simulations of up
to 30,000 atoms on up to 100 processors. Though it is designed for distributed memory parallel
machines, we have taken care to ensure that it can, with minimum modification, be run on common
workstations. Scaling up a simulation from a small workstation to a massively parallel machine is
therefore a useful feature of the package.

We request that our users respect the copyright of the DL POLY Classic source and not alter
any authorship or copyright notices within.

Further information about the DL POLY Classic package can be obtained from the CCP5
Program Library website:

http : //www.ccp5.ac.uk/software/.

1.2 Functionality

The following is a list of the features in DL POLY Classic.

1.2.1 Molecular Systems

DL POLY Classic will simulate the following molecular species:

1. Simple atomic systems and mixtures e.g. Ne, Ar, Kr, etc.

2. Simple unpolarisable point ions e.g. NaCl, KCl, etc.

3. Polarisable point ions and molecules e.g. MgO, H2O etc.D

4. Simple rigid molecules e.g. CCl4, SF6, Benzene, etc.

5. Rigid molecular ions with point charges e.g. KNO3, (NH4)2SO4, etc.

6. Polymers with rigid bonds e.g. CnH2n+2

7. Polymers with rigid bonds and point charges e.g. proteins

8. Macromolecules and biological systems

9. Molecules with flexible bonds

10. Silicate glasses and zeolites

11. Simple metals and alloys e.g. Al, Ni, Cu etc.

12. Covalent systems e.g. C, Si, Ge, SiC, SiGe etc.

In addition, since version 1.10, DL POLY can perform a path integral molecular dynamics
(PIMD) simulation of atomistic systems and systems composed of flexible molecules.

3

http://www.ccp5.ac.uk/software/

c⃝STFC Section 1.2

1.2.2 The DL POLY Classic Force Field

The DL POLY Classic force field includes the following features:

1. All common forms of non-bonded atom-atom potential;

2. Atom-atom (site-site) Coulombic potentials;

3. Valence angle potentials;

4. Dihedral angle potentials;

5. Inversion potentials;

6. Improper dihedral angle potentials;

7. 3-body valence angle and hydrogen bond potentials;

8. 4-body inversion potentials;

9. Finnis-Sinclair and embedded atom type density dependent potentials (for metals) [3, 4].

10. The Tersoff density dependent potential for covalent systems [5].

The parameters describing many of these these potentials may be obtained, for example, from
the GROMOS [6], Dreiding [7] or AMBER [8] force field, which share functional forms.

Note that DL POLY Classic does not have its own force field. However, the force fields
mentioned above can be adapted for DL POLY Classic using the program DL FIELD, which
was developed at Daresbury Laboratory by Chin Yong, specifically for constructing DL POLY
compatible force field files. DL FIELD can be found via the CCP5 Program Library website
http://www.ccp5.ac.uk/software/. Otherwise adaptation by hand is possible for simple systems.

1.2.3 Boundary Conditions

DL POLY Classic will accommodate the following boundary conditions:

1. None e.g. isolated polymer in space.

2. Cubic periodic boundaries.

3. Orthorhombic periodic boundaries.

4. Parallelepiped periodic boundaries.

5. Truncated octahedral periodic boundaries.

6. Rhombic dodecahedral periodic boundaries.

7. Slab (x,y periodic, z nonperiodic).

8. Hexagonal prism periodic boundaries.

These are describe in detail in Appendix B.

4

http://www.ccp5.ac.uk/software/

c⃝STFC Section 1.3

1.2.4 The Java Graphical User Interface

DL POLY Classic has a Graphical User Interface (GUI) written specifically for the package in the
Java programming language from Sun microsystems. The Java programming environment is free
and it is particularly suitable for building graphical user interfaces. An attractive aspect of java is
the portability of the compiled GUI, which may be run without recompiling on any Java supported
machine. The GUI is an integral component of the DL POLY Classic package and is available
under the same terms. (See [9].)

Other graphics packages are suitable for use with DL POLY Classic. In particular VMD [10]
and Aten [11] are recommended. VMD is particularly good for visualizing DL POLY HISTORY
files and Aten is useful for constructing systems for simulation.

1.2.5 Algorithms

1.2.5.1 Parallel Algorithms

DL POLY Classic exclusively employs the Replicated Data parallelisation strategy [12, 13] (see
section 2.6.1).

1.2.5.2 Molecular Dynamics Algorithms

The DL POLY Classic MD algorithms are optionally available in the form of the Verlet Leapfrog
or the Velocity Verlet integration algorithms [14].

In the leapfrog scheme a parallel version of the SHAKE algorithm [15, 13] is used for bond
constraints and a similar adaptation of the RATTLE algorithm [16] is implmented in the velocity
Verlet scheme.

Rigid body rotational motion is handled under the leapfrog scheme with Fincham’s implicit
quaternion algorithm (FIQA) [17]. For velocity Verlet integration of rigid bodies DL POLY Classic
uses the ‘NOSQUISH’ algorithm of Miller et al [18].

Rigid molecular species linked by rigid bonds are handled with an algorithm of our own devising,
called the QSHAKE algorithm [19] which has been adapted for both leapfrog and velocity Verlet
schemes.

NVE, NVT, NPT and NσT ensembles are available, with a selection of thermostats and
barostats. The velocity Verlet versions are based on the reversible integrators of Martyna et al
[20].

The NVT algorithms in DL POLY Classic are those of Evans [21], Berendsen [22]; and Hoover
[23]. The NPT algorithms are those of Berendsen [22] and Hoover [23] and the NσT algorithms
are those of Berendsen [22] and Hoover [23].

The full range of MD algorithms available in DL POLY Classic is described in section 2.5.

1.2.5.3 Structure Relaxation Algorithms

DL POLY Classic has a selection of structure relaxation methods available. These are useful to
improve the starting structure of a molecular dynamics simulation. The algorithms available are:

1. ‘Zero’ temperature molecular dynamics (sometimes called damped molecular dynamics);

2. Conjugate gradients minimisation;

3. ‘Programmed’ energy minimisation, involving both molecular dynamics and conjugate gradi-
ents .

Starting structure minimisation is described in section 3.2.4.

5

c⃝STFC Section 1.3

1.3 Programming Style

The programming style of DL POLY Classic is intended to be as uniform as possible. The following
stylistic rules apply throughout. Potential contributors of code are requested to note the stylistic
convention.

1.3.1 Programming Language

DL POLY Classic is written exclusively in FORTRAN 90. Use is made of F90 Modules. Explicit
type declaration is used throughout.

1.3.2 Memory Management

In DL POLY Classic, the major array dimensions are calculated at the start of execution and the
associated arrays created through the dynamic array allocation features of FORTRAN 90.

1.3.3 Target Computers

DL POLY Classic is intended for distributed memory parallel computers. However, versions of the
program for serial computers are easily produced. To facilitate this all machine specific calls are
located in dedicated FORTRAN routines, to permit substitution by appropriate alternatives.

DL POLY Classic will run on a wide selection of computers. This includes most single processor
workstations for which it requires a FORTRAN 90 compiler and (preferably) a UNIX environment.
It has also been compiled for a Windows PC using both the GFORTRAN and G95 FORTRAN
compiler augmented by the CygWin UNIX shell. The Message Passing Interface (MPI) software is
essential for parallel execution.

1.3.4 Version Control System (CVS)

DL POLY Classic was developed with the aid of the CVS version control system. We strongly
recommend that users of DL POLY Classic adopt this (or a similar) system for local develop-
ment of the DL POLY Classic code, particularly where several users access the same source code.
References to suitable software can be found on the internet.

1.3.5 Required Program Libraries

DL POLY Classic is, for the most part, self contained and does not require access to additional
program libraries. The exception is the MPI software library required for parallel execution.

Users requiring the Smoothed Particle Mesh Ewald (SPME) method may prefer to use a propri-
etary 3D FFT other than the one (dlpfft3) supplied with the package for optimal performance.
There are comments in the source code which provide guidance for applications on Cray and IBM
computers, which use the routines ccfft3d and dcft3 respectively. Similarly users will find
comments for the public domain FFT routine fftwnd fft.

1.3.6 Internal Documentation

All subroutines are supplied with a header block of FORTRAN COMMENT records giving:

1. The name of the author and/or modifying author

2. The version number or date of production

6

c⃝STFC Section 1.3

3. A brief description of the function of the subroutine

4. A copyright statement

Elsewhere FORTRAN COMMENT cards are used liberally.

1.3.7 Subroutine/Function Calling Sequences

The variables in the subroutine arguments are specified in the order:

1. logical and logical arrays

2. character and character arrays

3. integer

4. real and complex

5. integer arrays

6. real and complex arrays

This is admittedly arbitrary, but it really does help with error detection.

1.3.8 FORTRAN Parameters

All global parameters defined by the FORTRAN parameter statements are specified in the module:
setup module. All parameters specified in setup module are described by one or more comment
cards.

1.3.9 Arithmetic Precision

All real variables and parameters are specified in 64-bit precision (i.e real*8).

1.3.10 Units

Internally all DL POLY Classic subroutines and functions assume the use of the following defined
molecular units:

1. The unit of time (to) is 1× 10−12 seconds (i.e. picoseconds).

2. The unit of length (ℓo) is 1× 10−10 metres (i.e. Ångstroms).

3. The unit of mass (mo) is 1.6605402× 10−27 kilograms (i.e. atomic mass units).

4. The unit of charge (qo) is 1.60217733× 10−19 coulombs (i.e. unit of proton charge).

5. The unit of energy (Eo = mo(ℓo/to)
2) is 1.6605402× 10−23 Joules (10 J mol−1).

6. The unit of pressure (Po = Eoℓ
−3
o) is 1.6605402× 107 Pascal (163.882576 atm).

7. Planck’s constant (h̄) which is 6.350780719× Eoto.

7

c⃝STFC Section 1.4

In addition the following conversion factors are used:
The coulombic conversion factor (γo) is:

γo =
1

Eo

[
q2o

4πϵoℓo

]
= 138935.4835

such that:
UMKS = EoγoUInternal

Where U represents the configuration energy.
The Boltzmann factor (kB) is 0.831451115 EoK

−1, such that:

T = Ekin/kB

represents the conversion from kinetic energy (in internal units) to temperature (in Kelvin).
Note: In the DL POLY Classic CONTROL and OUTPUT files, the pressure is given in units of

kilo-atmospheres (k-atm) at all times. The unit of energy is either DL POLY Classic units specified
above, or in other units specified by the user at run time. The default is DL POLY units.

1.3.11 Error Messages

All errors detected by DL POLY Classic during run time initiate a call to the subroutine error,
which prints an error message in the standard output file and terminates the program. All termi-
nations of the program are global (i.e. every node of the parallel computer will be informed of the
termination condition and stop executing.)

In addition to terminal error messages, DL POLY Classic will sometimes print warning mes-
sages. These indicate that the code has detected something that is unusual or inconsistent. The
detection is non-fatal, but the user should make sure that the warning does represent a harmless
condition.

More on error handling can be found in section (3.3).

1.4 The DL POLY Classic Directory Structure

The entire DL POLY Classic package is stored in a Unix directory structure. The topmost directory
is named dl poly class. Beneath this directory are several sub-directories:

sub-directory contents

source primary subroutines for the DL POLY Classic package
utility subroutines, programs and example data for all utilities
data example input and output files for DL POLY Classic
execute the DL POLY Classic run-time directory
build makefiles to assemble and compile DL POLY Classic programs
java directory of Java and FORTRAN routines for the Java GUI

A more detailed description of each sub-directory follows.

1.4.1 The source Sub-directory

In this sub-directory all the essential source code for DL POLY Classic, excluding the utility soft-
ware. The modules are assembled at compile time using an appropriate makefile.

8

c⃝STFC Section 1.6

1.4.2 The utility Sub-directory

This sub-directory stores all the utility programs in DL POLY Classic. Users who devise their own
utilities are advised to store them in the utility sub-directory.

1.4.3 The data Sub-directory

This sub-directory contains examples of input and output files for testing the released version of
DL POLY Classic. The examples of input data are copied into the execute sub-directory when a
program is being tested. The test cases are documented in chapter 9.

1.4.4 The execute Sub-directory

In the supplied version of DL POLY Classic, this sub-directory contains only a few macros for
copying and storing data from and to the data sub-directory and for submitting programs for
execution. (These are decribed in section 10.1.1.) However when a DL POLY Classic program
is assembled using its makefile, it will be placed in this sub-directory and will subsequently be
executed from here. The output from the job will also appear here, so users will find it convenient
to use this sub-directory if they wish to use DL POLY Classic as intended. (The experienced user
is not absolutely required to use DL POLY Classic this way however.)

1.4.5 The build Sub-directory

This sub-directory contains the standard makefiles for the creation (i.e. compilation and link-
ing) of the DL POLY Classic simulation programs. The makefiles supplied select the appropriate
subroutines from the source sub-directory and deposit the executable program in the execute di-
rectory. The user is advised to copy the appropriate makefile into the source directory, in case any
modifications are required. The copy in the build sub-directory will then serve as a backup.

1.4.6 The java Sub-directory

The DL POLY Classic Java Graphical User Interface (GUI) is based on the Java language developed
by Sun. The Java source code for this GUI is to be found in this sub-directory togther with a java
executable GUI.jar which can be run immediately if a Java runner is available on your system.

java− jarGUI.jar

Otherwise the source files are complete and sufficient to create a working GUI, provided the
user has a java compiler installed (or the Java Development Kit, 1.4 or above), both of which are
available free from

http : //www.oracle.com

The GUI, once compiled, may be executed on any machine where Java is installed. (See [9].)

1.5 Obtaining the Source Code

DL POLY Classic source code and the associated test data is available from CCPForge at

http : //ccpforge.cse.rl.ac.uk.

9

http://www.oracle.com
http://ccpforge.cse.rl.ac.uk

c⃝STFC Section 1.6

1.6 Other Information

The CCP5 Program Library website:

http : //www.ccp5.ac.uk/software/

provides information on other Daresbury Laboratory programs related to DL POLY.

10

http://www.ccp5.ac.uk/software/

Chapter 2

Force Fields and Algorithms

11

c⃝STFC Section 2.0

Scope of Chapter

This chapter describes the interaction potentials and simulation algorithms coded into DL POLY Classic.

12

c⃝STFC Section 2.1

2.1 The DL POLY Classic Force Field

The force field is the set of functions needed to define the interactions in a molecular system. These
may have a wide variety of analytical forms, with some basis in chemical physics, which must be
parameterised to give the correct energy and forces. A huge variety of forms is possible and for
this reason the DL POLY Classic force field is designed to be adaptable. While it is not supplied
with its own force field parameters, many of the functions familiar to GROMOS, [6] Dreiding [7],
AMBER [8] and OPLS [24] users have been coded in the package, as well as less familiar forms. In
addition DL POLY Classic retains the possibility of the user defining additional potentials.

In DL POLY Classic the total configuration energy of a molecular system may be written as:

U(r1, r2, . . . , rN) =
Nbond∑
ibond=1

Ubond(ibond, ra, rb)

+

Nangle∑
iangle=1

Uangle(iangle, ra, rb, rc)

+
Ndihed∑
idihed=1

Udihed(idihed, ra, rb, rc, rd)

+
Ninv∑
iinv=1

Uinv(iinv, ra, rb, rc, rd)

+
N−1∑
i=1

N∑
j>i

Upair(i, j, |ri − rj |)

+
N−2∑
i=1

N−1∑
j>i

N∑
k>j

U3 body(i, j, k, ri, rj , rk)

+
N−1∑
i=1

N∑
j>i

UTersoff (i, j, ri, rj , R
N)

+
N−3∑
i=1

N−2∑
j>i

N−1∑
k>j

N∑
n>k

U4 body(i, j, k, n, ri, rj , rk, rn)

+
N∑
i=1

UMetal(i, ri, R
N)

+
N∑
i=1

Uextn(i, ri, vi) (2.1)

where Ubond, Uangle, Udihed, Uinv, Upair, U3 body, UTersoff and U4 body are empirical interaction
functions representing chemical bonds, valence angles, dihedral angles, inversion angles, pair-body,
three-body, Tersoff (many-body covalent), and four-body forces respectively. The first four are
regarded by DL POLY Classic as intra-molecular interactions and the next five as inter-molecular
interactions. The term Umetal is a density dependent (and therefore many-body) metal potential .
The final term Uextn represents an external field potential.

The position vectors ra, rb, rc and rd refer to the positions of the atoms specifically involved
in a given interaction. (Almost universally, it is the differences in position that determine the
interaction.) A special vector RN is used to indicate a many-body dependence. The numbers
Nbond, Nangle, Ndihed and Ninv refer to the total numbers of these respective interactions present

13

c⃝STFC Section 2.1

in the simulated system, and the indices ibond, iangle, iinv and idihed uniquely specify an individ-
ual interaction of each type. It is important to note that there is no global specification of the
intramolecular interactions in DL POLY Classic - all bonds, valence angles and dihedrals must be
individually cited.

The indices i, j (and k, n) appearing in the pair-body (and three or four-body) terms indicate
the atoms involved in the interaction. There is normally a very large number of these and they are
therefore specified according to atom types rather than indices. In DL POLY Classic it is assumed
that the pair-body terms arise from van der Waals and/or electrostatic (Coulombic) forces. The
former are regarded as short ranged interactions and the latter as long ranged. Long ranged
forces require special techniques to evaluate accurately (see section 2.4.) In DL POLY Classic the
three-body terms are restricted to valence angle and H-bond forms. The nonbonded, three-body,
four-body and Tersoff , interactions are globally specified according to the types of atoms involved.
DL POLY Classic also has the ability to handle metals via density dependent functions (see below).
Though essentially many-body potentials their particular form means they are handled in a manner
very similar to pair potentials.

In DL POLY Classic the intramolecular bonded terms are handled using bookkeeping arrays,
which specify the atoms involved in a particular interaction and point to the appropriate arrays of
parameters that define the potential. The calculation of bonded forces therefore follows the simple
scheme:

1. Every atom in the simulated system is assigned a unique index number from 1 to N ;

2. Every intramolecular bonded term Utype in the system has a unique index number itype: from
1 to Ntype where type represents a bond, angle or dihedral.

3. A pointer array keytype(ntype, itype) carries the indices of the specific atoms involved in the
potential term labelled itype. The dimension ntype will be 2, 3 or 4, if the term represents a
bond, valence angle, dihedral/inversion.

4. The array keytype(ntype, itype) is used to identify the atoms in a bonded term and the appro-
priate form of interaction and thus to calculate the energy and forces.

DL POLY Classic calculates the nonbonded pair interactions using a Verlet neighbour list [14]
which is reconstructed at intervals during the simulation. This list records the indices of all ‘sec-
ondary’ atoms within a certain radius of each ‘primary’ atom; the radius being the cut-off radius
(rcut) normally applied to the nonbonded potential function, plus an additional increment (∆rcut).
The neighbour list removes the need to scan over all atoms in the simulation at every timestep. The
larger radius (rcut+∆rcut) means the same list can be used for several timesteps without requiring
an update. The frequency at which the list must be updated depends on the thickness of the region
∆rcut. DL POLY Classic has two methods for constructing the neighbour list: the first is based on
the Brode-Ahlrichs scheme [25] and is used when rcut is large in comparison with the simulation
cell; the second uses the link-cell algorithm [26] when rcut is relatively small. The potential energy
and forces arising from the nonbonded interactions are calculated using interpolation tables.

A complication in the construction of the Verlet neighbour list for macromolecules is the concept
of excluded atoms, which arises from the need to exclude certain atom pairs from the overall list.
Which atom pairs need to be excluded is dependent on the precise nature of the force field model,
but as a minimum atom pairs linked via extensible bonds or constraints and atoms (grouped in
pairs) linked via valence angles are probable candidates. The assumption behind this requirement
is that atoms that are formally bonded in a chemical sense, should not participate in nonbonded
interactions with each other. (However this is not a universal requirement of all force fields.) The
same considerations are needed in dealing with charged excluded atoms. DL POLY Classic has

14

c⃝STFC Section 2.2

several subroutines available for constructing the Verlet neighbour list, while taking care of the
excluded atoms (see chapter 3 for further information.)

Three- and four-body nonbonded forces are assumed to be short ranged and therefore calcu-
lated using the link-cell algorithm [26]. They ignore the possibility of there being any excluded
interactions involving the atoms concerned.

Throughout this section the description of the force field assumes the simulated system is
described as an assembly of atoms. This is for convenience only and readers should understand
that DL POLY Classic does recognise molecular entities, defined either through constraint bonds
or rigid bodies. In the case of rigid bodies, the atomic forces are resolved into molecular forces and
torques. These matters are discussed in greater detail later in sections 2.5.2.1 and 2.5.7).

2.2 The Intramolecular Potential Functions

In this section we catalogue and describe the forms of potential function available in DL POLY Classic
The key words required to select potential forms are given in brackets () before each definition.
The derivations of the atomic forces, virial and stress tensor are also outlined.

2.2.1 Bond Potentials

i j

r
ij

Figure 2.1: The interatomic bond vector.

The bond potentials describe explicit bonds between specified atoms. They are functions of the
interatomic distance only. The potential functions available are as follows.

1. Harmonic bond: (harm)

U(rij) =
1

2
k(rij − ro)2; (2.2)

2. Morse potential: (mors)

U(rij) = Eo[{1− exp(−k(rij − ro))}2 − 1]; (2.3)

3. 12-6 potential bond: (12-6)

U(rij) =

(
A

r12ij

)
−
(
B

r6ij

)
; (2.4)

4. Restrained harmonic: (rhrm)

U(rij) =
1

2
k(rij − ro)2 |rij − ro| ≤ rc; (2.5)

U(rij) =
1

2
kr2c + krc(|rij − ro| − rc) |rij − ro| > rc; (2.6)

5. Quartic potential: (quar)

U(rij) =
k

2
(rij − ro)2 +

k′

3
(rij − ro)3 +

k′′

4
(rij − ro)4. (2.7)

15

c⃝STFC Section 2.2

6. Buckingham potential: (buck)

U(rij) = A exp

(
−rij
ρ

)
− C

r6ij
; (2.8)

7. Shifted finitely extendible non-linear elastic (FENE) potential [27, 28, 29]: (fene)

U(rij) =

 −0.5 k R2
o ln

[
1−

(
rij−∆
Ro

)2]
: rij < Ro +∆

∞ : rij ≥ Ro +∆
(2.9)

The FENE potential is used to maintain the distance between connected beads and to prevent
chains from crossing each other. It is used in combination with the WCA (2.99) potential to
create a potential well for the flexible bonds of a molecule, that maintains the topology of
the molecule. This implementation allows for a radius shift of up to half a Ro (|∆| ≤ 0.5 Ro)
with a default of zero (∆default = 0).

8. Coulomb potential: (coul)

U(rij) =
1

4πϵ0

qiqj
rij

(2.10)

Note that the Coulombic bond potential is not normally required, as generally the electro-
static interactions are handled as nonbonded terms elsewhere in the program. However, it is
sometimes explicit in the description of the chemical bond in a way that is different from the
default electrostatic treatment, and needs to be introduced as an extra feature.

In these formulae rij is the distance between atoms labelled i and j:

rij = |rj − ri|, (2.11)

where rℓ is the position vector of an atom labelled ℓ. 1

The force on the atom j arising from a bond potential is obtained using the general formula:

f
j
= − 1

rij

[
∂

∂rij
U(rij)

]
rij , (2.12)

The force f
i
acting on atom i is the negative of this.

The contribution to be added to the atomic virial is given by

W = −rij · f j , (2.13)

with only one such contribution from each bond.
The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.14)

where α and β indicate the x, y, z components. The atomic stress tensor derived in this way is
symmetric.

In DL POLY Classic bond forces are handled by the routine bndfrc.

1Note: some DL POLY Classic routines may use the convention that rij = ri − rj . Nobody’s perfect.

16

c⃝STFC Section 2.2

2.2.2 Distance Restraints

In DL POLY Classic distance restraints, in which the separation between two atoms, is maintained
around some preset value r0 is handled as a special case of bond potentials. As a consequence dis-
tance restraints may be applied only between atoms in the same molecule. Unlike with application
of the “pure” bond potentials, the electrostatic and van der Waals interactions between the pair
of atoms are still evaluated when distance restraints are applied. All the potential forms of the
previous section are as avaliable distance restraints, although they have different key words:

1. Harmonic potential: (-hrm)

2. Morse potential: (-mrs)

3. 12-6 potential bond: (-126)

4. Restrained harmonic: (-rhm)

5. Quartic potential: (-qur)

6. Buckingham potential: (-bck)

7. FENE potential: (-fen)

8. Coulombic bond: (-cou)

In DL POLY Classic distance restraints are handled by the routine bndfrc.

2.2.3 Valence Angle Potentials

i

j k

rikrij θ

Figure 2.2: The valence angle and associated vectors

The valence angle potentials describe the bond bending terms between the specified atoms.
They should not be confused with the three body potentials described later, which are defined by
atom types rather than indices.

1. Harmonic: (harm)

U(θjik) =
k

2
(θjik − θ0)2; (2.15)

2. Quartic: (quar)

U(θjik) =
k

2
(θjik − θ0)2 +

k′

3
(θjik − θ0)3 +

k′′

4
(θjik − θ0)4; (2.16)

17

c⃝STFC Section 2.2

3. Truncated harmonic: (thrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(r8ij + r8ik)/ρ

8]; (2.17)

4. Screened harmonic: (shrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(rij/ρ1 + rik/ρ2)]; (2.18)

5. Screened Vessal[30]: (bvs1)

U(θjik) =
k

8(θjik − π)2
{[

(θ0 − π)2 − (θjik − π)2
]2}

exp[−(rij/ρ1 + rik/ρ2)]; (2.19)

6. Truncated Vessal[31]: (bvs2)

U(θjik) = k[θajik(θjik − θ0)2(θjik + θ0 − 2π)2 − a

2
πa−1

(θjik − θ0)2(π − θ0)3] exp[−(r8ij + r8ik)/ρ
8]. (2.20)

7. Harmonic cosine: (hcos)

U(θjik) =
k

2
(cos(θjik)− cos(θ0))2 (2.21)

8. Cosine: (cos)
U(θjik) = A[1 + cos(mθjik − δ)] (2.22)

9. MM3 stretch-bend: (mmsb)

U(θjik) = A(θjik − θ0)(rij − roij)(rik − roik) (2.23)

10. Compass stretch-stretch: (stst)

Ujik = A(rij − roij)(rik − roik) (2.24)

11. Compass stretch-bend: (stbe)

U(θjik) = A(θjik − θ0)(rij − roij) (2.25)

12. Compass all terms: (cmps)

U(θjik) = A(rij − roij)(rik − roik) +
(θjik − θ0)(B(rij − roij) + C(rik − roik)) (2.26)

In these formulae θjik is the angle between bond vectors rij and rik:

θjik = cos−1

{
rij · rik
rijrik

}
(2.27)

In DL POLY Classic the most general form for the valence angle potentials can be written as:

U(θjik, rij , rik) = A(θjik)S(rij)S(rik) (2.28)

18

c⃝STFC Section 2.2

where A(θ) is a purely angular function and S(r) is a screening or truncation function. All the
function arguments are scalars. With this reduction the force on an atom derived from the valence
angle potential is given by:

fαℓ = − ∂

∂rαℓ
U(θjik, rij , rik), (2.29)

with atomic label ℓ being one of i, j, k and α indicating the x, y, z component. The derivative is

− ∂

∂rαℓ
U(θjik, rij , rik) = −S(rij)S(rik)

∂

∂rαℓ
A(θjik)

−A(θjik)S(rik)(δℓj − δℓi)
rαij
rij

∂

∂rij
S(rij)

−A(θjik)S(rij)(δℓk − δℓi)
rαik
rik

∂

∂rik
S(rik), (2.30)

with δab = 1 if a = b and δab = 0 if a ̸= b. In the absence of screening terms S(r), this formula
reduces to:

− ∂

∂rαℓ
U(θjik, rij , rik) = −

∂

∂rαℓ
A(θjik) (2.31)

The derivative of the angular function is

− ∂

∂rαℓ
A(θjik) =

{
1

sin(θjik)

}
∂

∂θjik
A(θjik)

∂

∂rαℓ

{
rij · rik
rijrik

}
, (2.32)

with

∂

∂rαℓ

{
rij · rik
rijrik

}
= (δℓj − δℓi)

rαik
rijrik

+ (δℓk − δℓi)
rαij
rijrik

−

cos(θjik)

{
(δℓj − δℓi)

rαij
r2ij

+ (δℓk − δℓi)
rαik
r2ik

}
(2.33)

The atomic forces are then completely specified by the derivatives of the particular functions A(θ)
and S(r).

The contribution to be added to the atomic virial is given by

W = −(rij · f j + rik · fk) (2.34)

It is worth noting that in the absence of screening terms S(r), the virial is zero [32].
The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j + rαikf

β
k (2.35)

and the stress tensor is symmetric.
In DL POLY Classic valence forces are handled by the routine angfrc.

2.2.4 Angular Restraints

In DL POLY Classic angle restraints, in which the angle subtended by a triplet of atoms, is main-
tained around some preset value θ0 is handled as a special case of angle potentials. As a consequence
angle restraints may be applied only between atoms in the same molecule. Unlike with application
of the “pure” angle potentials, the electrostatic and van der Waals interactions between the pair
of atoms are still evaluated when distance restraints are applied. All the potential forms of the
previous section are available as angular restraints, although they have different key words:

19

c⃝STFC Section 2.2

1. Harmonic: (-hrm)

2. Quartic: (-qur)

3. Truncated harmonic: (-thm)

4. Screened harmonic: (-shm)

5. Screened Vessal[30]: (-bv1)

6. Truncated Vessal[31]: (-bv2)

7. Harmonic cosine: (-hcs)

8. Cosine : (-cos)

9. MM3 stretch-bend: (-msb)

10. Compass stretch-stretch (-sts)

11. Compass stretch-bend (-stb)

12. Compass all terms (-cmp)

In DL POLY Classic angular restraints are handled by the routine angfrc.

2.2.5 Dihedral Angle Potentials

j

rjk

rkn

r ij

i

k

n

Φ

Figure 2.3: The dihedral angle and associated vectors

The dihedral angle potentials describe the interaction arising from torsional forces in molecules.
(They are sometimes referred to as torsion potentials.) They require the specification of four atomic
positions. The potential functions available in DL POLY Classic are as follows.

1. Cosine potential: (cos)
U(ϕijkn) = A [1 + cos(mϕijkn − δ)] (2.36)

2. Harmonic: (harm)

U(ϕijkn) =
1

2
k(ϕijkn − ϕ0)2 (2.37)

3. Harmonic cosine: (hcos)

U(ϕijkn) =
k

2
(cos(ϕijkn)− cos(ϕ0))2 (2.38)

20

c⃝STFC Section 2.2

4. Triple cosine: (cos3)

U(ϕ) =
1

2
A1(1 + cos(ϕ)) +

1

2
A2(1− cos(2ϕ)) +

1

2
A3(1 + cos(3ϕ)) (2.39)

5. Ryckaert-Bellemans hydrocarbon potential: (ryck)

U(ϕijkn) = A(a0 +
5∑

i=1

(aicos
i(ϕ)) (2.40)

6. Ryckaert-Bellemans fluorinated potential: (rbf)

U(ϕijkn) = B(b0 +
5∑

i=1

(bicos
i(ϕ)) (2.41)

7. OPLS angle potential

U(ϕijkn) = a0 + 0.5 ∗ (a1(1 + cos(ϕ)) + a2(1− cos(2ϕ)) + a3(1 + cos(3ϕ))) (2.42)

In these formulae ϕijkn is the dihedral angle defined by

ϕijkn = cos−1{B(rij , rjk, rkn)}, (2.43)

with

B(rij , rjk, rkn) =

{
(rij × rjk) · (rjk × rkn)
|rij × rjk||rjk × rkn|

}
. (2.44)

With this definition, the sign of the dihedral angle is positive if the vector product (rij × rjk) ×
(rjk× rkn) is in the same direction as the bond vector rjk and negative if in the opposite direction.

The force on an atom arising from the dihedral potential is given by

fαℓ = − ∂

∂rαℓ
U(ϕijkn), (2.45)

with ℓ being one of i, j, k, n and α one of x, y, z. This may be expanded into

− ∂

∂rαℓ
U(ϕijkn) =

{
1

sin(ϕijkn)

}
∂

∂ϕijkn
U(ϕijkn)

∂

∂rαℓ
B(rij , rjk, rkn). (2.46)

The derivative of the function B(rij , rjk, rkn) is

∂

∂rαℓ
B(rij , rjk, rkn) =

1

|rij × rjk||rjk × rkn|
∂

∂rαℓ
{(rij × rjk) · (rjk × rkn)} (2.47)

− cos(ϕijkn)

2

{
1

|rij × rjk|2
∂

∂rαℓ
|rij × rjk|2 +

1

|rjk × rkn|2
∂

∂rαℓ
|rjk × rkn|2

}
,

with

∂

∂rαℓ
{(rij × rjk) · (rjk × rkn)} = rαij([rjkrjk]α(δℓk − δℓn) + [rjkrkn]α(δℓk − δℓj)) +

rαjk([rijrjk]α(δℓn − δℓk) + [rjkrkn]α(δℓj − δℓi)) +

rαkn([rijrjk]α(δℓk − δℓj) + [rjkrjk]α(δℓi − δℓj)) +

2rαjk[rijrkn]α(δℓj − δℓk), (2.48)

21

c⃝STFC Section 2.2

∂

∂rαℓ
|rij × rjk|2 = 2rαij([rjkrjk]α(δℓj − δℓi) + [rijrjk]α(δℓj − δℓk)) +

2rαjk([rijrij]α(δℓk − δℓj) + [rijrjk]α(δℓi − δℓj)), (2.49)

∂

∂rαℓ
|rjk × rkn|2 = 2rαkn([rjkrjk]α(δℓn − δℓk) + [rjkrkn]α(δℓj − δℓk)) +

2rαjk([rknrkn]α(δℓk − δℓj) + [rjkrkn]α(δℓk − δℓn)). (2.50)

Where we have used the the following definition:

[a b]α =
∑
β

(1− δαβ)aβbβ. (2.51)

Formally, the contribution to be added to the atomic virial is given by

W = −
4∑

i=1

ri · f i (2.52)

However it is possible to show (by tedious algebra using the above formulae, or more elegantly by
thermodynamic arguments [32],) that the dihedral makes no contribution to the atomic virial.

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijp
β
i + rαjkp

β
jk + rαknp

β
n (2.53)

−cos(ϕijkn)

2

{
rαijg

β
i + rαjkg

β
k + rαjkh

β
j + rαknh

β
n

}
,

with

pαi = (rαjk[rjkrkn]α − rαkn[rjkrjk]α)/(|rij × rjk||rjk × rkn|) (2.54)

pαn = (rαjk[rijrjk]α − rαij [rjkrjk]α)/(|rij × rjk||rjk × rkn|) (2.55)

pαjk = (rαij [rjkrkn]α + rαkn[rijrjk]α − 2rαjk[rijrkn]α)/(|rij × rjk||rjk × rkn|) (2.56)

gαi = 2(rαij [rjkrjk]α − rαjk[rijrjk]α)/|rij × rjk|2 (2.57)

gαk = 2(rαjk[rijrij]α − rαij [rijrjk]α)/|rij × rjk|2 (2.58)

hαj = 2(rαjk[rknrkn]α − rαkn[rjkrkn]α)/|rjk × rkn|2 (2.59)

hαn = 2(rαkn[rknrkn]α − rαjk[rjkrkn]α)/|rjk × rkn|2 (2.60)

The sum of the diagonal elements of the stress tensor is zero (since the virial is zero) and the matrix
is symmetric.

Lastly, it should be noted that the above description does not take into account the possible
inclusion of distance-dependent 1-4 interactions, as permitted by some force fields. Such interactions
are permissible in DL POLY Classic and are described in the section on pair potentials below.
DL POLY Classic also permits scaling of the 1-4 interactions by a numerical factor. 1-4 interactions
do, of course, contribute to the atomic virial.

In DL POLY Classic dihedral forces are handled by the routine dihfrc.

2.2.6 Improper Dihedral Angle Potentials

Improper dihedrals are used to restrict the geometry of molecules and as such need not have a
simple relation to conventional chemical bonding. DL POLY Classic makes no distinction between

22

c⃝STFC Section 2.2

dihedral angle functions and improper dihedrals (both are calculated by the same subroutines) and
all the comments made in the preceeding section apply.

An important example of the use of the improper dihedral is to conserve the structure of chiral
centres in molecules modelled by united-atom centres. For example α-amino acids such as alanine
(CH3CH(NH2)COOH), in which it is common to represent the CH3 and CH groups as single centres.
Conservation of the chirality of the α carbon is achieved by defining a harmonic improper dihedral
angle potential with an equilibrium angle of 35.264o. The angle is defined by vectors r12, r23 and
r34, where the atoms 1,2,3 and 4 are shown in the following figure. The figure defines the D and
L enantiomers consistent with the international (IUPAC) convention. When defining the dihedral,
the atom indices are entered in DL POLY Classic in the order 1-2-3-4.

1

2

3

4

C

N

H

α

β
D

1

2

3

4

C

N

H

α

β
L

L = α - N - C - β
1 2 3 4

D = α - C - N - β
1 2 3 4

Figure 2.4: The L and D enantiomers and defining vectors

In DL POLY Classic improper dihedral forces are handled by the routine dihfrc.

2.2.7 Inversion Angle Potentials

φ

i

j

n

k

Figure 2.5: The inversion angle and associated vectors

The inversion angle potentials describe the interaction arising from a particular geometry of
three atoms around a central atom. The best known example of this is the arrangement of hydrogen

23

c⃝STFC Section 2.2

atoms around nitrogen in ammonia to form a trigonal pyramid. The hydrogens can ‘flip’ like an
inverting umbrella to an alternative structure, which in this case is identical, but in principle causes
a change in chirality. The force restraining the ammonia to one structure can be described as an
inversion potential (though it is usually augmented by valence angle potentials also). The inversion
angle is defined in the figure above - note that the inversion angle potential is a sum of the
three possible inversion angle terms. It resembles a dihedral potential in that it requires the
specification of four atomic positions.

The potential functions available in DL POLY Classic are as follows.

1. Harmonic: (harm)

U(ϕijkn) =
1

2
k(ϕijkn − ϕ0)2 (2.61)

2. Harmonic cosine: (hcos)

U(ϕijkn) =
k

2
(cos(ϕijkn)− cos(ϕ0))2 (2.62)

3. Planar potential: (plan)
U(ϕijkn) = A [1− cos(ϕijkn)] (2.63)

In these formulae ϕijkn is the inversion angle defined by

ϕijkn = cos−1

{
rij · wkn

rijwkn

}
, (2.64)

with
wkn = (rij · ûkn)ûkn + (rij · v̂kn)v̂kn (2.65)

and the unit vectors

ûkn = (r̂ik + r̂in)/|r̂ik + r̂in|
v̂kn = (r̂ik − r̂in)/|r̂ik − r̂in|. (2.66)

As usual, rij = rj − ri etc. and the hat r̂ indicates a unit vector in the direction of r. The total
inversion potential requires the calculation of three such angles, the formula being derived from the
above using the cyclic permutation of the indices j → k → n→ j etc.

Equivalently, the angle ϕijkn may be written as

ϕijkn = cos−1

{
[(rij · ûkn)2 + (rij · v̂kn)2]1/2

rij

}
(2.67)

Formally, the force on an atom arising from the inversion potential is given by

fαℓ = − ∂

∂rαℓ
U(ϕijkn), (2.68)

with ℓ being one of i, j, k, n and α one of x, y, z. This may be expanded into

− ∂

∂rαℓ
U(ϕijkn) =

{
1

sin(ϕijkn)

}
∂

∂ϕijkn
U(ϕijkn)×

∂

∂rαℓ

{
[(rij · ûkn)2 + (rij · v̂kn)2]1/2

rij

}
. (2.69)

24

c⃝STFC Section 2.2

Following through the (extremely tedious!) differentiation gives the result:

fαℓ =

{
1

sin(ϕijkn)

}
∂

∂ϕijkn
U(ϕijkn)× (2.70){

−(δℓj − δℓi)
cos(ϕijkn)

r2ij
rαij +

1

rijwkn

[
(δℓj − δℓi){(rij · ûkn)ûαkn + (rij · v̂kn)v̂αkn}

+(δℓk − δℓi)
rij · ûkn
uknrik

{
rαij − (rij · ûkn)ûαkn − (rij · rik − (rij · ûkn)(rik · ûkn))

rαik
r2ik

}

+(δℓk − δℓi)
rij · v̂kn
vknrik

{
rαij − (rij · v̂kn)v̂αkn − (rij · rik − (rij · v̂kn)(rik · v̂kn))

rαik
r2ik

}

+(δℓn − δℓi)
rij · ûkn
uknrin

{
rαij − (rij · ûkn)ûαkn − (rij · rin − (rij · ûkn)(rin · ûkn))

rαin
r2in

}

−(δℓn − δℓi)
rij · v̂kn
vknrin

{
rαij − (rij · v̂kn)v̂αkn − (rij · rin − (rij · v̂kn)(rin · v̂kn))

rαin
r2in

}]}
This general formula applies to all atoms ℓ = i, j, k, n. It must be remembered however, that
these formulae apply to just one of the three contributing terms (i.e. one angle ϕ) of the full
inversion potential: specifically the inversion angle pertaining to the out-of-plane vector rij . The
contributions arising from the other vectors rik and rin are obtained by the cyclic permutation of
the indices in the manner described above. All these force contributions must be added to the final
atomic forces.

Formally, the contribution to be added to the atomic virial is given by

W = −
4∑

i=1

ri · f i (2.71)

However it is possible to show by thermodynamic arguments (cf [32],) or simply from the fact
that the sum of forces on atoms j,k and n is equal and opposite to the force on atom i, that the
inversion potential makes no contribution to the atomic virial.

If the force components fαℓ for atoms ℓ = i, j, k, n are calculated using the above formulae, it is
easily seen that the contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j + rαikf

β
k + rαinf

β
n (2.72)

The sum of the diagonal elements of the stress tensor is zero (since the virial is zero) and the matrix
is symmetric.

In DL POLY Classic inversion forces are handled by the routine invfrc.

2.2.8 The Calcite Four-Body Potential

This potential [33] is designed to help maintain the planar structure of the carbonate anion [CO3]
2−

in a similar manner to the planar inversion potential described above. However it is not an angular
potential. It is dependent on the perpendicular displacement (u) of an atom a from a plane defined
by three other atoms b, c, and d (see figure 2.6) and has the form

Uabcd(u) = Au2 +Bu4 (2.73)

Where the displacement u is given by

u =
rab · rbc × rbd
|rbc × rbd|

. (2.74)

25

c⃝STFC Section 2.2

Figure 2.6: The vectors of the calcite potential

Vectors rab,rac and rad define bonds between the central atom a and the peripheral atoms b, c and
d. Vectors rbc and rbd define the plane and are related to the bond vectors by:

rbc = rac − rab
rbd = rad − rab. (2.75)

It what follows it is convenient to define the vector product appearing in both the numerator and
denominator of equation (2.74) as the vector wcd vis.

wcd = rbc × rbd (2.76)

We also define the quantity γ(u) as

γ(u) = −(2Au+ 4Bu3). (2.77)

The forces on the individual atoms due to the calcite potential are then given by

f
a

= −γ(u)ŵcd

f
c

= rbd × (rab − uŵcd)γ(u)/wcd

f
d

= −rbc × (rab − uŵcd)γ(u)/wcd

f
b

= −(f
a
+ f

c
+ f

d
), (2.78)

where wcd = |wcd| and ŵcd = wcd/wcd. The virial contribution ψabcd(u) is given by

ψabcd(u) = 2Au2 + 4Bu4 (2.79)

and the stress tensor contribution σαβabcd(u) by

σαβabcd(u) =
uγ(u)

w2
cd

wα
cdw

β
cd. (2.80)

In DL POLY Classic the calcite forces are handled by the routine invfrc, which is a convenient
intramolecular four-body force routine. However it is manifestly not an inversion potential as such.

2.2.9 Tethering Forces

DL POLY Classic also allows atomic sites to be tethered to a fixed point in space, r0 taken as
their position at the beginning of the simulation. This is also known as position restraining. The
specification, which comes as part of the molecular description, requires a tether potential type and
the associated interaction parameters.

26

c⃝STFC Section 2.3

Note, firstly, that application of tethering potentials means that momentum will no longer be
a conserved quantity of the simulation. Secondly, in constant pressure simulations, where the MD
cell changes size or shape, the reference position is scaled with the cell vectors.

The potential functions available in DL POLY Classic are as follows, in each case ri0 is the
distance of the atom from its position at t = 0:

1. harmonic potential: (harm)

U(ri0) =
1

2
k(ri0)

2; (2.81)

2. restrained harmonic :(rhrm)

U(ri0) =
1

2
k(ri0)

2 ri0 ≤ rc; (2.82)

U(ri0) =
1

2
kr2c + krc(ri0 − rc) ri0 > rc; (2.83)

3. Quartic potential: (quar)

U(ri0) =
k

2
(ri0)

2 +
k′

3
(ri0)

3 +
k′′

4
(ri0)

4. (2.84)

The force on the atom i arising from a tether potential is obtained using the general formula:

f
i
= − 1

ri0

[
∂

∂ri0
U(ri0)

]
ri0, (2.85)

The contribution to be added to the atomic virial is given by

W = ri0 · f i, (2.86)

The contribution to be added to the atomic stress tensor is given by

σαβ = −rαi0f
β
i , (2.87)

where α and β indicate the x, y, z components. The atomic stress tensor derived in this way is
symmetric.

In DL POLY Classic bond forces are handled by the routine tethfrc.

2.2.10 Frozen Atoms

DL POLY Classic also allows atoms to be completely immobilised (i.e. “frozen” at a fixed point
in the MD cell). This is achieved by setting all forces and velocities associated with that atom to
zero during each MD timestep. Frozen atoms are signalled by assigning an atom a non-zero value
for the freeze parameter in the FIELD file. DL POLY Classic does not calculate contributions
to the virial or the stress tensor arising from the constraints required to freeze atomic positions.
In DL POLY Classic the frozen atom option cannot be used for sites in a rigid body. As with
the tethering potential, the reference position is scaled with the cell vectors in constant pressure
simulations.

In DL POLY Classic the frozen atom option is handled by the subroutine freeze.

2.3 The Intermolecular Potential Functions

In this section we outline the pair-body, three-body and four-body potential functions available
in DL POLY Classic. An important distinction between these and intramolecular (bond) forces in
DL POLY Classic is that they are specified by atom types rather than atom indices.

27

c⃝STFC Section 2.3

2.3.1 Short Ranged (van der Waals) Potentials

The short ranged pair forces available in DL POLY Classic are as follows.

1. 12 - 6 potential: (12-6)

U(rij) =

(
A

r12ij

)
−
(
B

r6ij

)
; (2.88)

2. Lennard-Jones: (lj)

U(rij) = 4ϵ

(σ

rij

)12

−
(
σ

rij

)6
 ; (2.89)

3. n - m potential [34]: (nm)

U(rij) =
Eo

(n−m)

[
m

(
ro
rij

)n

− n
(
ro
rij

)m]
; (2.90)

4. Buckingham potential: (buck)

U(rij) = A exp

(
−rij
ρ

)
− C

r6ij
; (2.91)

5. Born-Huggins-Meyer potential: (bhm)

U(rij) = A exp[B(σ − rij)]−
C

r6ij
− D

r8ij
; (2.92)

6. Hydrogen-bond (12 - 10) potential: (hbnd)

U(rij) =

(
A

r12ij

)
−
(
B

r10ij

)
; (2.93)

7. Shifted force n - m potential [34]: (snm)

U(rij) =
αEo

(n−m)

[
mβn

{(
ro
rij

)n

−
(
1

γ

)n
}
− nβm

{(
ro
rij

)m

−
(
1

γ

)m
}]

+
nmαEo

(n−m)

(
rij − γro
γro

){(
β

γ

)n

−
(
β

γ

)m}
(2.94)

with

γ =
rcut
ro

(2.95)

β = γ

(
γm+1 − 1

γn+1 − 1

) 1
n−m

(2.96)

α =
(n−m)

[nβm(1 + (m/γ −m− 1)/γm)−mβn(1 + (n/γ − n− 1)/γn)]
(2.97)

This peculiar form has the advantage over the standard shifted n-m potential in that both
Eo and r0 (well depth and location of minimum) retain their original values after the shifting
process.

28

c⃝STFC Section 2.3

8. Morse potential: (mors)

U(rij) = Eo[{1− exp(−k(rij − ro))}2 − 1]; (2.98)

9. Shifted Weeks-Chandler-Anderson (WCA) potential [35]: (wca)

U(rij) =

 4ϵ

[(
σ

rij−∆

)12
−
(

σ
rij−∆

)6]
+ ϵ : rij < 2

1
6 σ +∆

0 : rij ≥ 2
1
6 σ +∆

(2.99)

The WCA potential is the Lennard-Jones potential truncated at the position of the minimum
and shifted to eliminate discontinuity (includes the effect of excluded volume). It is usually
used in combination with the FENE (2.9) bond potential. This implementation allows for a
radius shift of up to half a σ (|∆| ≤ 0.5 σ) with a default of zero (∆default = 0).

10. Gaussian potential (gaus)

U(rij) =
3∑
n

Anexp(−bbr2ij) (2.100)

Up to 3 Gaussian terms are permitted, unrequired terms have An = 0.

11. Tabulation: (tab). The potential is defined numerically only.

The parameters defining these potentials are supplied to DL POLY Classic at run time (see
the description of the FIELD file in section 4.1.3). Each atom type in the system is specified by a
unique eight-character label defined by the user. The pair potential is then defined internally by
the combination of two atom labels.

As well as the numerical parameters defining the potentials, DL POLY Classic must also be
provided with a cutoff radius rcut, which sets a ranged limit on the computation of the interaction.
Together with the parameters, the cutoff is used by the subroutine forgen (or forgen rsq) to
construct an interpolation array vvv for the potential function over the ranged 0 to rcut. A second
array ggg is also calculated, which is related to the potential via the formula:

G(rij) = −rij
∂

∂rij
U(rij), (2.101)

and is used in the calculation of the forces. Both arrays are tabulated in units of energy. The use
of interpolation arrays, rather than the explicit formulae, makes the routines for calculating the
potential energy and atomic forces very general, and enables the use of user defined pair potential
functions. DL POLY Classic also allows the user to read in the interpolation arrays directly from
a file (see the description of the TABLE file (section 4.1.5). This is particularly useful if the pair
potential function has no simple analytical description (e.g. spline potentials).

The force on an atom j derived from one of these potentials is formally calculated with the
standard formula:

f
j
= − 1

rij

[
∂

∂rij
U(rij)

]
rij , (2.102)

where rij = rj − ri. The force on atom i is the negative of this.
The contribution to be added to the atomic virial (for each pair interaction) is

W = −rij · f j . (2.103)

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.104)

29

c⃝STFC Section 2.3

where α and β indicate the x, y, z components. The atomic stress tensor derived from the pair
forces is symmetric.

Since the calculation of pair potentials assumes a spherical cutoff (rcut) it is necessary to apply
a long ranged correction to the system potential energy and virial. Explicit formulae are needed for
each case and are derived as follows. For two atom types a and b, the correction for the potential
energy is calculated via the integral

Uab
corr = 2π

NaNb

V

∫ ∞

rcut
gab(r)Uab(r)r

2dr (2.105)

where Na, Nb are the numbers of atoms of types a and b, V is the system volume and gab(r) and
Uab(r) are the appropriate pair correlation function and pair potential respectively. It is usual to
assume gab(r) = 1 for r > rcut. DL POLY Classic sometimes makes the additional assumption that
the repulsive part of the short ranged potential is negligible beyond rcut.

The correction for the system virial is

Wab
corr = −2π

NaNb

V

∫ ∞

rcut
gab(r)

∂

∂r
Uab(r)r

3dr, (2.106)

where the same approximations are applied. Note that these formulae are based on the assumption
that the system is reasonably isotropic beyond the cutoff.

In DL POLY Classic the short ranged forces are calculated by one of the routines srfrce,
srfrce rsq, and srfrceneu. The long ranged corrections are calculated by routine lrcorrect.
The calculation makes use of the Verlet neighbour list described above.

2.3.2 Three Body Potentials

The three-body potentials in DL POLY Classic are mostly valence angle forms. (They are primarily
included to permit simulation of amorphous materials e.g. silicate glasses.) However, these have
been extended to include the Dreiding [7] hydrogen bond. The potential forms available are as
follows.

1. Harmonic: (harm)

U(θjik) =
k

2
(θjik − θ0)2 (2.107)

2. Truncated harmonic: (thrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(r8ij + r8ik)/ρ

8]; (2.108)

3. Screened Harmonic: (shrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(rij/ρ1 + rik/ρ2)]; (2.109)

4. Screened Vessal[30]: (bvs1)

U(θjik) =
k

8(θjik − π)2
{[

(θ0 − π)2 − (θjik − π)2
]2}

exp[−(rij/ρ1 + rik/ρ2)]; (2.110)

30

c⃝STFC Section 2.3

5. Truncated Vessal[31]: (bvs2)

U(θjik) = k[θajik(θjik − θ0)2(θjik + θ0 − 2π)2 − a

2
πa−1

(θjik − θ0)2(π − θ0)3] exp[−(r8ij + r8ik)/ρ
8]. (2.111)

6. Dreiding hydrogen bond [7]: (hbnd)

U(θjik) = Dhbcos
4(θjik)[5(Rhb/rjk)

12 − 6(Rhb/rjk)
10] (2.112)

Note that for the hydrogen bond, the hydrogen atom must be the central atom. Several of these
functions are identical to those appearing in the intra-molecular valenceangle descriptions above.
There are significant differences in implementation however, arising from the fact that the three-
body potentials are regarded as inter-molecular. Firstly, the atoms involved are defined by atom
types, not specific indices. Secondly, there are no excluded atoms arising from the three body
terms. (The inclusion of pair potentials may in fact be essential to maintain the structure of the
system.)

The three body potentials are very short ranged, typically of order 3 Å. This property, plus the
fact that three body potentials scale as N3, where N is the number of particles, makes it essential
that these terms are calculated by the link-cell method [36].

The calculation of the forces, virial and stress tensor as described in the section valence angle
potentials above.

DL POLY Classic applies no long ranged corrections to the three body potentials. The three
body forces are calculated by the routine thbfrc.

2.3.3 The Tersoff Covalent Potential

The Tersoff potential [5] is a special example of a density dependent potential, which has been
designed to reproduce the properties of covalent bonding in systems containing carbon, silicon,
germanium etc and alloys of these elements. A special feature of the potential is that it allows
bond breaking and associated changes in bond hybridisation. The potential has 11 atomic and 2
bi-atomic parameters. The energy is modelled as a sum of pair-like interactions where, however,
the coefficient of the attractive term in the pairlike potential (which plays the role of a bond order)
depends on the local environment giving a many-body potential.

The form of the Tersoff potential is: (ters)

Uij = fC(rij) [fR(rij)− γij fA(rij)], (2.113)

where
fR(rij) = Aij exp(−aij rij) , fA(rij) = Bij exp(−bij rij) (2.114)

fC(rij) =

1 : rij < Rij
1
2 + 1

2 cos[π (rij −Rij)/(Sij −Rij)] : Rij < rij < Sij
0 : rij > Sij

(2.115)

γij = χij (1 + βi
ηi Lηiij)

−1/2ηi , Lij =
∑
k ̸=i,j

fC(rik) ωik g(θijk)

g(θijk) = 1 + c2i /d
2
i − c2i /[d2i + (hi − cos θijk)

2] (2.116)

31

c⃝STFC Section 2.3

with further mixed parameters defined as

aij = (ai + aj)/2 , bij = (bi + bj)/2

Aij = (AiAj)
1/2 , Bij = (BiBj)

1/2 (2.117)

Rij = (RiRj)
1/2 , Sij = (SiSj)

1/2 .

Here i, j and k label the atoms in the system, rij is the length of the ij bond, and θijk is the bond
angle between bonds ij and ik. Single subscripted parameters (11), such as ai and ηi, depend only
on the type of atom.

The chemistry between different atom types is encapsulated in the two sets of bi-atomic param-
eters χij and ωij :

χii = 1 , χij = χji

ωii = 1 , ωij = ωji , (2.118)

which define only one independent parameter for each pair of atom types. The χ parameter is used
to strengthen or weaken the heteropolar bonds, relative to the value obtained by simple interpo-
lation. The ω parameter is used to permit greater flexibility when dealing with more drastically
different types of atoms.

The force on an atom ℓ derived from this potential is formally calculated with the formula:

fαℓ = − ∂

∂rαℓ
Etersoff =

1

2

∑
i ̸=j

− ∂

∂rαℓ
Uij , (2.119)

with atomic label ℓ being one of i, j, k and α indicating the x, y, z component. The derivative in
the above formula expands into

−∂Uij

∂rαℓ
= − ∂

∂rαℓ
fC(rij)fR(rij) + γij

∂

∂rαℓ
fC(rij)fA(rij) + fC(rij)fA(rij)

∂

∂rαℓ
γij , (2.120)

with the contributions from the first two terms being:

− ∂

∂rαℓ
fC(rij)fR(rij) = −

{
fC(rij)

∂

∂rij
fR(rij) + fR(rij)

∂

∂rij
fC(rij)

}
×{

δjℓ
rαiℓ
riℓ
− δiℓ

rαℓj
rℓj

}
(2.121)

γij
∂

∂rαℓ
fC(rij)fA(rij) = γij

{
fC(rij)

∂

∂rij
fA(rij) + fA(rij)

∂

∂rij
fC(rij)

}
×{

δjℓ
rαiℓ
riℓ
− δiℓ

rαℓj
rℓj

}
, (2.122)

and from the third (angular) term:

fC(rij)fA(rij)
∂

∂rαℓ
γij = fC(rij)fA(rij) χij ×(

−1

2

)(
1 + βi

ηi Lηiij
)− 1

2ηi
−1
βi

ηi Lηi−1
ij

∂

∂rαℓ
Lij , (2.123)

32

c⃝STFC Section 2.3

where
∂

∂rαℓ
Lij =

∂

∂rαℓ

∑
k ̸=i,j

ωik fC(rik) g(θijk) . (2.124)

The angular term can have three different contributions depending on the index of the particle
participating in the interaction:

ℓ = i :
∂

∂rαi
Lij =

∑
k ̸=i,j

ωik

[
g(θijk)

∂

∂rαi
fC(rik) + fC(rik)

∂

∂rαi
g(θijk)

]
(2.125)

ℓ = j :
∂

∂rαj
Lij =

∑
k ̸=i,j

ωik fC(rik)
∂

∂rαj
g(θijk) (2.126)

ℓ ̸= i, j :
∂

∂rαℓ
Lij = ωiℓ

[
g(θijℓ)

∂

∂rαℓ
fC(riℓ) + fC(riℓ)

∂

∂rαℓ
g(θijℓ)

]
. (2.127)

The derivative of g(θijk) is worked out in the following manner:

∂

∂rαℓ
g(θijk) =

∂g(θijk)

∂θijk

−1
sin θijk

∂

∂rαℓ

{
rij · rik
rij rik

}
, (2.128)

where

∂g(θijk)

∂θijk
=

2 c2i (hi − cos θijk) sin θijk
[d2i + (hi − cos θijk)2]2

(2.129)

∂

∂rαℓ

{
rij · rik
rijrik

}
= (δℓj − δℓi)

rαik
rijrik

+ (δℓk − δℓi)
rαij
rijrik

−

cos(θjik)

{
(δℓj − δℓi)

rαij
r2ij

+ (δℓk − δℓi)
rαik
r2ik

}
. (2.130)

The contribution to be added to the atomic virial can be derived as

W = 3V
∂Etersoff

∂V
=

3 V

2

∑
i ̸=j

∂Uij

∂V
(2.131)

W =
1

2

∑
i

∑
j ̸=i

{[
∂

∂rij
fC(rij)fR(rij)− γij

∂

∂rij
fC(rij)fA(rij)

]
rij−

(
−1

2

)
fC(rij)fA(rij) χij

(
1 + βi

ηi Lηiij
)− 1

2ηi
−1
βi

ηi Lηi−1
ij × (2.132)

∑
k ̸=i,j

ωik g(θijk)

[
∂

∂rik
fC(rik)

]
rik

 .
The contribution to be added to the atomic stress tensor is given by

σαβ = −rαi f
β
i , (2.133)

where α and β indicate the x, y, z components. The stress tensor is symmetric.
Interpolation arrays, vmbp and gmbp (set up in subroutine tergen) - similar to those in van

der Waals interactions 2.3.1 - are used in the calculation of the Tersoff forces, virial and stress.
The Tersoff potentials are very short ranged, typically of order 3 Å. This property, plus the fact

that Tersoff potentials (two- and three-body contributions) scale as N3, where N is the number of
particles, makes it essential that these terms are calculated by the link-cell method [36].

DL POLY Classic applies no long ranged corrections to the Tersoff potentials. In DL POLY Classic
Tersoff forces are handled by the routines tersoff, terint and tersoff3.

33

c⃝STFC Section 2.3

2.3.4 Four Body Potentials

The four-body potentials in DL POLY Classic are entirely inversion angle forms, primarily included
to permit simulation of amorphous materials (particularly borate glasses). The potential forms
available in DL POLY Classic are as follows.

1. Harmonic: (harm)

U(ϕijkn) =
1

2
k(ϕijkn − ϕ0)2 (2.134)

2. Harmonic cosine: (hcos)

U(ϕijkn) =
k

2
(cos(ϕijkn)− cos(ϕ0))2 (2.135)

3. Planar potential: (plan)
U(ϕijkn) = A[1− cos(ϕijkn)] (2.136)

These functions are identical to those appearing in the intra-molecular inversion angle descriptions
above. There are significant differences in implementation however, arising from the fact that the
four-body potentials are regarded as inter-molecular. Firstly, the atoms involved are defined by
atom types, not specific indices. Secondly, there are no excluded atoms arising from the four-body
terms. (The inclusion of other potentials, for example pair potentials, may in fact be essential to
maintain the structure of the system.)

The four body potentials are very short ranged, typically of order 3 Å. This property, plus the
fact that four body potentials scale as N4, where N is the number of particles, makes it essential
that these terms are calculated by the link-cell method [36].

The calculation of the forces, virial and stress tensor described in the section on inversion angle
potentials above.

DL POLY Classic applies no long ranged corrections to the four body potentials. The four-body
forces are calculated by the routine fbpfrc.

2.3.5 Metal Potentials

The metal potentials in DL POLY Classic follow two similar but distinct formalisms. The first of
these is the embedded atom model (EAM) [37, 38] and the second is the Finnis-Sinclair model
(FSM) [3]. Both are density dependent potentials derived from density functional theory (DFT)
and describe the bonding of a metal atom ultimately in terms of the local electronic density. They
are suitable for calculating the properties of metals and metal alloys.

For single component metals the two approaches are the same. However they are subtly
different in the way they are extended to handle alloys (see below). It follows that EAM and
FSM potentials cannot be mixed in a single simulation. Furthermore, even for FSM potentials
possessing different analytical forms there is no agreed procedure for mixing the parameters. The
user is therefore strongly advised to be consistent in the choice of potential when modelling alloys.

The general form of the EAM and FSM potentials is [39]

Umetal =
1

2

N∑
i=1

N∑
j ̸=i

Vij(rij) +
N∑
i=1

F (ρi) , (2.137)

where F (ρi) is a functional describing the energy of embedding an atom in the bulk density, ρi,
which is defined as

ρi =
N∑

j=1,j ̸=i

ρij(rij) . (2.138)

34

c⃝STFC Section 2.3

It should be noted that the density is determined by the coordination number of the atom defined
by pairs of atoms. This makes the metal potential dependent on the local density (environmental).
Vij(rij) is a pair potential incorporating repulsive electrostatic and overlap interactions. N is the
number of interacting particles in the MD box.

The types of metal potentials available in DL POLY Classic are as follows:

1. EAM potential: (eam) There are no explicit mathematical expressions for EAM potentials, so
this potential type is read exclusively in the form of interpolation arrays from the TABEAM
table file (as implemented in the mettab routine - Section 4.1.6.) The rules for combining the
potentials from different metals to handle alloys are different from the FSM class of potentials
(see below).

2. Finnis-Sinclair potential [3]: (fnsc) The Finnis-Sinclair potential is explicitly analytical. It
has the following form:

Vij(rij) = (rij − c)2(c0 + c1rij + c2r
2
ij)

ρij(rij) = (rij − d)2 + β
(rij − d)3

d
(2.139)

F (ρi) = −A√ρi ,

with parameters: c0, c1, c2, c, A, d, β, both c and d are cutoffs. Since first being proposed
a number of alternative analytical forms have been proposed, some of which are descibed
below. The rules for combining different metal potentials to model alloys are different from
the EAM potentials (see below).

3. Sutton-Chen potential [40, 41, 42]: (stch) The Sutton Chen potential is an analytical po-
tential in the FSM class. It has the form:

Vij(rij) = ϵ

(
a

rij

)n

ρij(rij) =

(
a

rij

)m

(2.140)

F (ρi) = −cϵ√ρi ,

with parameters: ϵ, a, n, m, c.

4. Gupta potential [43]: (gupt) The Gupta potential is another analytical potential in the FSM
class. It has the form:

Vij(rij) = A exp

(
−prij − r0

r0

)
ρij(rij) = exp

(
−2qij

rij − r0
r0

)
(2.141)

F (ρi) = −B√ρi ,

with parameters: A, r0, p, B, qij . Note the definition of A differs from the literature
form by a factor of 2, to comply with the general equation (2.137).

All of these metal potentials can be decomposed into pair contributions and thus fit within the
general tabulation scheme of DL POLY Classic, where they are treated as pair interactions (though
note that the metal cutoff, rmet has nothing to do with short ranged cutoff, rvdw). DL POLY Classic
calculates this potential in two stages: the first calculates the local density, ρi, for each atom; and

35

c⃝STFC Section 2.3

the second calculates the potential energy and forces. Interpolation arrays, vmet, gmet and fmet

(metgen, mettab) are used in both these stages in the same spirit as in the van der Waals
interaction calculations.

The total force f tot
k

on an atom k derived from this potential is calculated in the standard way:

f tot
k

= −∇kUmetal . (2.142)

We rewrite the EAM/FSM potential, (2.137), as

Umetal = U1 + U2

U1 =
1

2

N∑
i=1

N∑
j ̸=i

Vij(rij) (2.143)

U2 =
N∑
i=1

F (ρi) ,

where rij = rj − ri . The force on atom k is the sum of the derivatives of U1 and U2 with respect
to rk, which is recognisable as a sum of pair forces:

1. EAM force

−∂U1

∂rk
= −1

2

N∑
i=1

N∑
j ̸=i

∂Vij(rij)

∂rij

∂rij
∂rk

=
N∑

j=1,j ̸=k

∂Vkj(rkj)

∂rkj

rkj

rkj

−∂U2

∂rk
= −

N∑
i=1

∂F

∂ρi

N∑
j ̸=i

∂ρij(rij)

∂rij

∂rij
∂rk

(2.144)

= −
N∑

i=1,i ̸=k

∂F

∂ρi

∂ρik(rik)

∂rik

∂rik
∂rk
−

N∑
j=1,j ̸=k

∂F

∂ρk

∂ρkj(rkj)

∂rkj

∂rkj
∂rk

=
N∑

j=1,j ̸=k

(
∂F

∂ρk
+
∂F

∂ρj

)
∂ρkj(rkj)

∂rkj

rkj

rkj
.

In DL POLY Classic the generation of the force arrays from tabulated data (implemented in
the metal deriv routine) is done using a five point interpolation precedure.

2. Finnis-Sinclair force

−∂U1

∂rk
=

N∑
j=1,j ̸=k

{
2(rkj − c)(c0 + c1rkj + c2r

2
kj) + (rkj − c)2(c1 + 2c2rkj)

} rkj
rkj

−∂U2

∂rk
= −

N∑
j=1,j ̸=k

A

2

(
1
√
ρk

+
1
√
ρj

){
2(rkj − d) + 3β

(rkj − d)2

d

}
rkj

rkj
. (2.145)

3. Sutton-Chen force

−∂U1

∂rk
= −

N∑
j=1,j ̸=k

nϵ

(
a

rkj

)n rkj

r2kj

−∂U2

∂rk
=

N∑
j=1,j ̸=k

mcϵ

2

(
1
√
ρk

+
1
√
ρj

)(
a

rkj

)m rkj

r2kj
. (2.146)

36

c⃝STFC Section 2.3

4. Gupta force

−∂U1

∂rk
= −

N∑
j=1,j ̸=k

Ap

r0
exp

(
−prkj − r0

r0

) rkj
rkj

−∂U2

∂rk
=

N∑
j=1,j ̸=k

Bqkj
r0

(
1
√
ρk

+
1
√
ρj

)
exp

(
−2qkj

rkj − r0
r0

) rkj
rkj

. (2.147)

With the metal forces thus defined the contribution to be added to the atomic virial from each
atom pair is then

W = −rij · f j , (2.148)

which equates to:

Ψ = 3V
∂U

∂V

Ψ =
3

2
V

N∑
i=1

N∑
j ̸=i

∂Vij(rij)

∂rij

∂rij
∂V

+ 3V
N∑
i=1

∂F (ρi)

∂ρi

∂ρi
∂V

= Ψ1 +Ψ2

∂rij
∂V

=
∂V 1/3sij
∂V

=
1

3
V −2/3sij =

rij
3V

Ψ1 =
1

2

N∑
i=1

N∑
j ̸=i

∂Vij(rij)

∂rij
rij (2.149)

∂ρi
∂V

=
∂

∂V

N∑
j=1,j ̸=i

ρij(rij) =
N∑

j=1,j ̸=i

∂ρij(rij)

∂rij

∂rij
∂V

=
1

3V

N∑
j=1,j ̸=i

∂ρij(rij)

∂rij
rij

Ψ2 =
1

2

N∑
i=1

N∑
j ̸=i

(
∂F (ρi)

∂ρi
+
∂F (ρj)

∂ρj

)
∂ρij(rij)

∂rij
rij .

1. EAM virial
The same as above.

2. Finnis-Sinclair virial

Ψ1 =
1

2

N∑
i=1

N∑
j ̸=i

{
2(rij − c)(c0 + c1rij + c2r

2
ij) + (rij − c)2(c1 + 2c2rij)

}
rij

Ψ2 =
1

2

N∑
i=1

N∑
j ̸=i

A

2

(
1
√
ρi

+
1
√
ρj

){
2(rij − d) + 3β

(rij − d)2

d

}
rija . (2.150)

3. Sutton-Chen virial

Ψ1 = −1

2

N∑
i=1

N∑
j ̸=i

nϵ

(
a

rij

)n

Ψ2 =
1

2

N∑
i=1

N∑
j ̸=i

mcϵ

2

(
1
√
ρi

+
1
√
ρj

)(
a

rij

)m

. (2.151)

37

c⃝STFC Section 2.3

4. Gupta virial

Ψ1 = −1

2

N∑
i=1

N∑
j ̸=i

Ap

r0
exp

(
−prij − r0

r0

)
rij

Ψ2 =
1

2

N∑
i=1

N∑
j ̸=i

Bqij
r0

(
1
√
ρi

+
1
√
ρj

)
exp

(
−2qij

rij − r0
r0

)
rij . (2.152)

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.153)

where α and β indicate the x, y, z components. The atomic stress tensor is symmetric.
The long ranged correction for the DL POLY Classic metal potential is in two parts. Firstly,

by analogy with the short ranged potentials, the correction to the local density is

ρi =
∞∑

j=1,j ̸=i

ρij(rij)

ρi =

rij<rmet∑
j=1,j ̸=i

ρij(rij) +

rij≥rmet∑
j=1,j ̸=i

ρij(rij) = ρoi + δρi (2.154)

δρi = 4πρ̄

∫ ∞

rmet

ρij(r)dr , (2.155)

where ρoi is the uncorrected local density and ρ̄ is the mean particle density. Evaluating the integral
part of the above equation yields:

1. EAM density correction
No long ranged corrections apply beyond rmet.

2. Finnis-Sinclair density correction
No long ranged corrections apply beyond cutoffs c and d.

3. Sutton-Chen density correction

δρi =
4πρ̄a3

(m− 3)

(
a

rmet

)m−3

. (2.156)

4. Gupta density correction

δρi =
2πρ̄r0
qij

r2met + 2rmet

(
r0
qij

)
+ 2

(
r0
qij

)2
 exp(−2qij rmet − r0

r0

)
. (2.157)

The density correction is applied immediately after the local density is calculated. The pair term
correction is obtained by analogy with the short ranged potentials and is

U1 =
1

2

N∑
i=1

∞∑
j ̸=i

Vij(rij)

U1 =
1

2

N∑
i=1

rij<rmet∑
j ̸=i

Vij(rij) +
1

2

N∑
i=1

rij≥rmet∑
j ̸=i

Vij(rij) = Uo
1 + δU1

38

c⃝STFC Section 2.3

δU1 = 2πNρ̄

∫ ∞

rmet

Vij(r)r
2dr

U2 =
N∑
i=1

F (ρ0i + δρi) (2.158)

U2 =
N∑
i=1

F (ρ0i) +
N∑
i=1

∂F (ρi)0
∂ρi

δρi) = U0
2 + δU2

δU2 = 4πρ̄
N∑
i=1

∂F (ρi)0
∂ρi

∫ ∞

rmet

ρij(r)r
2dr .

Note: that δU2 is not required if ρi has already been corrected. Evaluating the integral part of
the above equations yields:

1. EAM energy correction
No long ranged corrections apply beyond rmet.

2. Finnis-Sinclair energy correction
No long ranged corrections apply beyond cutoffs c and d.

3. Sutton-Chen energy correction

δU1 =
2πNρ̄ϵa3

(n− 3)

(
a

rmet

)n−3

δU2 = − 4πρ̄a3

(m− 3)

(
a

rmet

)n−3
⟨
Ncϵ

2
√
ρ0i

⟩
. (2.159)

4. Gupta energy correction

δU1 =
2πNρ̄Ar0

p

[
r2met + 2rmet

(
r0
p

)
+ 2

(
r0
p

)2
]
×

exp

(
−prmet − r0

r0

)

δU2 = −2πρ̄r0
qij

r2met + 2rmet

(
r0
qij

)
+ 2

(
r0
qij

)2
× (2.160)

exp

(
−2qij

rmet − r0
r0

)⟨
NB

2
√
ρ0i

⟩
.

To estimate the virial correction we assume the corrected local densities are constants (i.e. in-
dependent of distance - at least beyond the ranged rmet). This allows the virial correction to be
computed by the methods used in the short ranged potentials:

Ψ1 =
1

2

N∑
i=1

∞∑
j ̸=i

∂Vij(rij)

∂rij
rij

Ψ1 =
1

2

N∑
i=1

rij<rmet∑
j ̸=i

∂Vij(rij)

∂rij
rij +

1

2

N∑
i=1

rij≥rmet∑
j ̸=i

∂Vij(rij)

∂rij
rij

= Ψ0
1 + δΨ1

39

c⃝STFC Section 2.3

δΨ1 = 2πNρ̄

∫ ∞

rmet

∂Vij(r)

∂rij
r3dr

Ψ2 =
N∑
i=1

∂F (ρi
∂ρi

∞∑
j ̸=i

∂ρij(rij)

∂rij
rij (2.161)

Ψ2 =
N∑
i=1

∂F (ρi
∂ρi

rij<rmet∑
j ̸=i

∂ρij(rij)

∂rij
rij +

N∑
i=1

∂F (ρi
∂ρi

rij≥rmet∑
j ̸=i

∂ρij(rij)

∂rij
rij

= Ψ0
2 + δΨ2

δΨ2 = 4πρ̄
N∑
i=1

∂F (ρi)

∂ρi

∫ ∞

rmet

∂ρij(r)

∂r
r3dr .

Evaluating the integral part of the above equations yields:

1. EAM virial correction
No long ranged corrections apply beyond rmet.

2. Finnis-Sinclair virial correction
No long ranged corrections apply beyond cutoffs c and d.

3. Sutton-Chen virial correction

δΨ1 = −n2πNρ̄ϵa
3

(n− 3)

(
a

rmet

)n−3

δΨ2 = m
4πρ̄a3

(m− 3)

(
a

rmet

)n−3
⟨
Ncϵ

2
√
ρ0i

⟩
. (2.162)

4. Gupta virial correction

δΨ1 = − p

r0

2πNρ̄Ar0
p

[
r3met + 3r2met

(
r0
p

)
+ 6rmet

(
r0
p

)2

+ 6

(
r0
p

)3
]
×

exp

(
−prmet − r0

r0

)

δΨ2 =
qij
r0

2πρ̄r0
qij

r3met + 3r2met

(
r0
qij

)
+ 6rmet

(
r0
qij

)2

+ 6

(
r0
qij

)3
× (2.163)

exp

(
−2qij

rmet − r0
r0

)⟨
NB

2
√
ρ0i

⟩
.

In the energy and virial corrections we have used the approximation:

N∑
i

ρ
−1/2
i =

N

< ρ
1/2
i >

, (2.164)

where < ρ
1/2
i > is regarded as a constant of the system.

In DL POLY Classic the metal forces are handled by the routine metfrc. The local density
is calculated by the routines metdens, eamden and fsden. The long ranged corrections are
calculated by lrcmetal. Reading and generation of EAM table data from TABEAM is handled
by mettab and metal deriv.

40

c⃝STFC Section 2.3

Notes on the Treatment of Alloys

The distinction to be made between EAM and FSM potentials with regard to alloys concerns the
mixing rules for unlike interactions. Starting with equations (2.137) and (2.138), it is clear that we
require mixing rules for terms Vij(rij) and ρij(rij) when atoms i and j are of different kinds. Thus
two different metals A and B we can distinguish 4 possible variants of each:

V AA
ij (rij), V

BB
ij (rij), V

AB
ij (rij), V

BA
ij (rij)

and
ρAA
ij (rij), ρ

BB
ij (rij), ρ

AB
ij (rij), ρ

BA
ij (rij).

These forms recognise that the contribution of a type A atom to the potential of a type B atom
may be different from the contribution of a type B atom to the potential of a type A atom. In
both EAM [4] and FSM [41] cases it turns out that

V AB
ij (rij) = V BA

ij (rij) , (2.165)

though the mixing rules are different in each case (beware!).
With regard to density, in the EAM case it is required that [4]:

ρAB
ij (rij) = ρBB

ij (rij)

ρBA
ij (rij) = ρAA

ij (rij) , (2.166)

which means that an atom of type A contributes the same density to the environment of an atom
of type B as it does to an atom of type A, and vice versa.

For the FSM case [41] a different rule applies:

ρAB
ij (rij) = (ρAA

ij (rij)ρ
BB
ij (rij))

1/2 (2.167)

so that atoms of type A and B contribute the same densities to each other, but not to atoms of
the same type.

Thus when specifying these potentials in the DL POLY Classic FIELD file for an alloy composed
of n different metal atom types both EAM and FSM require the specification of n(n + 1)/2 pair
functions V AB

ij (rij). However, the EAM requires only n density functions ρAA
ij (rij), whereas the

FSM class requires all the cross functions ρAB
ij (rij) or n(n + 1)/2 in total. In addition to the

n(n + 1)/2 pair functions and n density functions the EAM requires further specification of n
functional forms of the density dependence (i.e. the embedding function F (ρi) in (2.137)).

For EAM potentials all the functions are supplied in tabular form via the table file TABEAM
(see section 4.1.6) to which DL POLY Classic is redirected by the FIELD file data. The FSM
potentials are defined via the necessary parameters in the FIELD file.

2.3.6 External Fields

In addition to the molecular force field, DL POLY Classic allows the use of an external force field.
Examples of field available include:

1. Electric field: (elec)
Fi = Fi + qi.H (2.168)

2. Oscillating shear: (oshm)
F x = A cos(2nπ.z/Lz) (2.169)

41

c⃝STFC Section 2.4

3. Continuous shear: (shrx)

vx =
1

2
A
|z|
z

: |z| > z0 (2.170)

4. Gravitational field: (grav)
Fi = Fi +mi.H (2.171)

5. Magnetic field: (magn)
Fi = Fi + qi.(vi ∧H) (2.172)

6. Containing sphere: (sphr)

F = A(R0 − r)−n : r > Rcut (2.173)

7. Harmonic repulsive wall in z-direction: (zbnd)

F = A(zo − z) : z > zo (2.174)

8. Harmonic restraint zone in z-direction: (zres)

F z =

{
A (zcom − zmax) : zcom > zmax

A (zmin − zcom) : zcom < zmin
(2.175)

where zcom is the chosen molecule centre of mass.

It is recommended that the use of an external field should be accompanied by a thermostat (this
does not apply to examples 6 and 7, since these are conservative fields). The user is advised to be
careful with units!

In DL POLY Classic external field forces are handled by the routine extnfld.

2.4 Long Ranged Electrostatic (Coulombic) Potentials

DL POLY Classic incorporates several techniques for dealing with long ranged electrostatic poten-
tials 2. These are as follows.

1. Atomistic and charge group implementation.

2. Direct Coulomb sum;

3. Truncated and shifted Coulomb sum;

4. Damped shifted force Coulomb sum;

5. Coulomb sum with distance dependent dielectric;

6. Ewald sum;

7. Smoothed Particle Mesh Ewald (SPME);

8. Hautman Klein Ewald for systems with 2D periodicity;

9. Reaction field;

2Unlike the other elements of the force field, the electrostatic forces are NOT specified in the input FIELD file,
but by setting appropriate directives in the CONTROL file. See section 4.1.1.

42

c⃝STFC Section 2.4

10. Dynamical shell model;

11. Relaxed shell model.

Some of these techniques can be combined. For example 1, 3 and 4 can be used in conjunction
with 9. The Ewald sum, SPME and Hautman Klein Ewald are restricted to periodic (or pseudo-
periodic) systems only, though DL POLY Classic can handle a broad selection of periodic boundary
conditions, including cubic, orthorhombic, parallelepiped, truncated octahedral, hexagonal prism
and rhombic dodecahedral. The Ewald sum is the method of choice for periodic systems. The
other techniques can be used with either periodic or non-periodic systems, though in the case of
the direct Coulomb sum, there are likely to be problems with convergence.

DL POLY Classic will correctly handle the electrostatics of both molecular and atomic species.
However it is assumed that the system is electrically neutral. A warning message is printed if the
system is found to be charged, but otherwise the simulation proceeds as normal. No correction for
non-neutrality is applied, except in the case of the Ewald based methods.

2.4.1 Atomistic and Charge Group Implementation

The Ewald sum is an accurate method for summing long ranged Coulomb potentials in periodic
systems. This can be a very cpu intensive calculation and the use of more efficient, but less accurate
methods, is common. Invariably this involves truncation of the potential at some finite distance
rcut. If an atomistic scheme is used for the truncation criterion there is no guarantee that the
interaction sphere will be neutral and spurious “charging” effects will almost certainly be seen in
a simulation. This arises because the potential being truncated is long ranged (1/r for charge-
charge interactions). However if the cutoff scheme is based on neutral groups of atoms, then at
worst, at long distance the interaction will be a dipole-dipole interaction and vary as 1/r3. The
truncation effects at the cutoff are therefore much less severe than if an atomistic scheme is used.
In DL POLY Classic the interaction is evaluated between all atoms of both groups if any site of
the first group is within the cutoff distance of any site of the second group. The groups are known
interchangeably as “charge groups” or “neutral groups” in the documentation - which serves as a
reminder that the advantages of using such a scheme are lost if the groups carry an overall charge.
There is no formal requirement in DL POLY Classic that the groups actually be electrically neutral.

The charge group scheme is more cpu intensive than a simple atomistic cutoff scheme as more
computation is required to determine whether or not to include a set of interactions. However the
size of the Verlet neighbourhood list (easily the largest array in DL POLY Classic) is considerably
smaller with a charge group scheme than an atomistic scheme as only a list of interacting groups
need be stored as opposed to a list of interacting atoms.

2.4.2 Direct Coulomb Sum

Use of the direct Coulomb sum is sometimes necessary for accurate simulation of isolated (nonpe-
riodic) systems. It is not recommended for periodic systems.

The interaction potential for two charged ions is

U(rij) =
1

4πϵ0

qiqj
rij

(2.176)

with qℓ the charge on an atom labelled ℓ, and rij the magnitude of the separation vector rij = rj−ri.
The force on an atom j derived from this force is

f
j
=

1

4πϵ0

qiqj
r3ij

rij (2.177)

43

c⃝STFC Section 2.4

with the force on atom i the negative of this.
The contribution to the atomic virial is

W = − 1

4πϵ0

qiqj
rij

(2.178)

which is simply the negative of the potential term.
The contribution to be added to the atomic stress tensor is

σαβ = rαijf
β
j , (2.179)

where α, β are x, y, z components. The atomic stress tensor is symmetric.
In DL POLY Classic these forces are handled by the routines coul0 and coul0neu.

2.4.3 Truncated and Shifted Coulomb Sum

This form of the Coulomb sum has the advantage that it drastically reduces the ranged of electro-
static interactions, without giving rise to a violent step in the potential energy at the cutoff. Its
main use is for preliminary preparation of systems and it is not recommended for realistic models.

The form of the potential function is

U(rij) =
qiqj
4πϵ0

{
1

rij
− 1

rcut

}
(2.180)

with qℓ the charge on an atom labelled ℓ, rcut the cutoff radius and rij the magnitude of the
separation vector rij = rj − ri.

The force on an atom j derived from this potential, within the radius rcut, is

f
j
=

1

4πϵ0

qiqj
r3ij

rij (2.181)

with the force on atom i the negative of this.
The contribution to the atomic virial is

W = −rij · f j (2.182)

which is not the negative of the potential term in this case.
The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.183)

where α, β are x, y, z components. The atomic stress tensor is symmetric.
In DL POLY Classic these forces are handled by the routine coul1.

2.4.4 Damped Shifted Force Coulomb sum

A further refinement of the truncated and shifted Coulomb sum is to truncate the 1/r potential
at rcut and add a linear term to the potential in order to make both the energy and the force zero
at the cutoff (the shifted force Coulombic potential). This is formally equivalent to surrounding
each charge with a spherical charge of radius rcut, which neutralises the charge content of the cutoff
sphere. The potential is thus

U(rij) =
qiqj
4πϵ0

[
1

rij
+

rij
r2cut
− 2

rcut

]
(2.184)

44

c⃝STFC Section 2.4

with the force on atom j given by

f
j
=

qiqj
4πϵ0

[
1

r2ij
− 1

r2cut

]
rij
rij

(2.185)

with the force on atom i the negative of this.
This removes the heating effects that arise from the discontinuity in the forces at the cutoff in

the simple truncated and shifted potential.
More recently Wolf et al [44] took the shifted force Coulomb potential a step further by the

introduction of an additional ‘damping’ function to moderate the 1/rij dependence . This was
reported to be a viable alternative to the Ewald summation that was particularly effective for
large systems. The basic assumption is that in condensed phase systems the electrostatic forces
are effectively screened by charge ordering so that at long ranged any given charge ‘looks’ like a
neutral object. Meanwhile the force shifting is formally equivalent to surrounding each charge with
a spherical charge that neutralises the charge content of the cutoff sphere, thus resembling the
natural screening on a predetermined distance scale (rcut). The method thus assumes that these
two effects are the same.

The Wolf et al method [44] was cast into a form suitable for molecular dynamics by Fennell and
Gezelter [45], which is the form implemented in DL POLY Classic. In this form damping function
is the same complementary error function as appears in the Ewald sum (see section 2.4.6):

U(rij) =
qiqj
4πϵ0

[
erfc(αrij)

rij
− erfc(αrcut)

rcut
+

(
erfc(αrcut)

r2cut
+

2α

π1/2
exp(−α2r2cut)

rcut

)
(rij − rcut)

]
· · ·

· (rij ≤ rcut) (2.186)

The corresponding force is given by

f
j

=
qiqj
4πϵ0

[
erfc(αrij)

r2ij
+

2α

π1/2
exp(−α2r2ij)

rij
− erfc(αrcut)

r2cut
− 2α

π1/2
exp(−α2r2cut)

rcut

]
rij
rij
· · ·

· (rij ≤ rcut) (2.187)

Note these formulae reduce to the basic shifted force Coulombic potential forms when the conver-
gence parameter α is zero.

The contribution to the atomic virial is

W = −rij · f j (2.188)

which is not the negative of the potential term.
The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.189)

where α, β are x, y, z components. The atomic stress tensor is symmetric.
In DL POLY Classic these forces are handled by the routine coul4.

2.4.5 Coulomb Sum with Distance Dependent Dielectric

As with the previous case, this potential attempts to soften the impact of truncating the direct
Coulomb sum . It also assumes that the electrostatic forces are effectively ‘screened’ in real systems
- an effect which is approximated by introducing a dielectic term that increases with distance.

45

c⃝STFC Section 2.4

The interatomic potential for two charged ions is

U(rij) =
1

4πϵ0ϵ(rij)

qiqj
rij

(2.190)

with qℓ the charge on an atom labelled ℓ, and rij the magnitude of the separation vector rij = rj−ri.
ϵ(r) is the distance dependent dielectric function. In DL POLY Classic it is assumed that this
function has the form

ϵ(r) = ϵr (2.191)

where ϵ is a constant. Inclusion of this term effectively accelerates the rate of convergence of the
Coulomb sum.

The force on an atom j derived from this potential is

f
j
=

1

2πϵ0ϵ

qiqj
r4ij

rij (2.192)

with the force on atom i the negative of this.
The contribution to the atomic virial is

W = −rij · f j (2.193)

which is −2 times the potential term.
The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.194)

where α, β are x, y, z components. The atomic stress tensor is symmetric.
In DL POLY Classic these forces are handled by the routines coul2 and coul2neu.
One last point to note is that the reaction field method can also be implemented with the

damped shifted force Coulombic potential described above (section 2.4.4), so that polarisation of
the long ranged medium by the dipole of the cutoff sphere may be accounted for.

2.4.6 Ewald Sum

The Ewald sum [14] is the best technique for calculating electrostatic interactions in a periodic (or
pseudo-periodic) system.

The basic model for a neutral periodic system is a system of charged point ions mutually inter-
acting via the Coulomb potential. The Ewald method makes two amendments to this simple model.
Firstly each ion is effectively neutralised (at long range) by the superposition of a spherical gaussian
cloud of opposite charge centred on the ion. The combined assembly of point ions and gaussian
charges becomes the Real Space part of the Ewald sum, which is now short ranged and treatable by
the methods described above (section 2.1). 3 The second modification is to superimpose a second
set of gaussian charges, this time with the same charges as the original point ions and again centred
on the point ions (so nullifying the effect of the first set of gaussians). The potential due to these
gaussians is obtained from Poisson’s equation and is solved as a Fourier series in Reciprocal Space.
The complete Ewald sum requires an additional correction, known as the self energy correction,
which arises from a gaussian acting on its own site, and is constant. Ewald’s method therefore
replaces a potentially infinite sum in real space by two finite sums: one in real space and one in
reciprocal space; and the self energy correction.

3Strictly speaking, the real space sum ranges over all periodic images of the simulation cell, but in the
DL POLY Classic implementation, the parameters are chosen to restrict the sum to the simulation cell and its
nearest neighbours i.e. the minimum images of the cell contents.

46

c⃝STFC Section 2.4

For molecular systems, as opposed to systems comprised simply of point ions, additional mod-
ifications are necessary to correct for the excluded (intra-molecular) Coulombic interactions. In
the real space sum these are simply omitted. In reciprocal space however, the effects of individual
gaussian charges cannot easily be extracted, and the correction is made in real space. It amounts
to removing terms corresponding to the potential energy of an ion ℓ due to the gaussian charge on
a neighbouring ion m (or vice versa). This correction appears as the third term in the full Ewald
formula below. The distinction between the error function erf and the more usual complementary
error function erfc found in the real space sum, should be noted.

The total electrostatic energy is given by the following formula.

Uc =
1

2Voϵ0

∞∑
k ̸=0

exp(−k2/4α2)

k2
|

N∑
j

qj exp(−ik · rj)|2 +
1

4πϵ0

N∗∑
n<j

qjqn
rnj

erfc(αrnj)

− 1

4πϵ0

∑
molecules

M∗∑
ℓ≤m

qℓqm

{
δℓm

α√
π
+
erf(αrℓm)

r1−δℓm
ℓm

}
− 1

8ϵ

1

Voα2

N∑
j

qj

2

, (2.195)

where N is the number of ions in the system and N∗ the same number discounting any excluded
(intramolecular) interactions. M∗ represents the number of excluded atoms in a given molecule and
includes the atomic self correction. The last term on the right is the Fuchs correction for charged
systems [46]. Vo is the simulation cell volume and k is a reciprocal lattice vector defined by

k = ℓu+mv + nw (2.196)

where ℓ,m, n are integers and u, v, w are the reciprocal space basis vectors. Both Vo and u, v, w are
derived from the vectors (a, b, c) defining the simulation cell. Thus

Vo = |a · b× c| (2.197)

and

u = 2π
b× c
a · b× c

v = 2π
c× a
a · b× c

(2.198)

w = 2π
a× b
a · b× c

.

With these definitions, the Ewald formula above is applicable to general periodic systems. (A small
additional modification is necessary for rhombic dodecahedral and truncated octahedral simulation
cells [47].)

In practice the convergence of the Ewald sum is controlled by three variables: the real space
cutoff rcut; the convergence parameter α and the largest reciprocal space vector kmax used in the
reciprocal space sum. These are discussed more fully in section 3.2.5. DL POLY Classic can provide
estimates if requested (see CONTROL file description 4.1.1.

The force on an atom j is obtained by differentiation and is

f
j

= − qj
Voϵ0

∞∑
k ̸=0

ik exp(ik · rj)
exp(−k2/4α2)

k2

N∑
n

qn exp(−ik · rn)

+
qj

4πϵ0

N∗∑
n

qn
r3nj

{
erfc(αrnj) +

2αrnj√
π

exp(−α2r2nj)

}
rnj (2.199)

− qj
4πϵ0

M∗∑
ℓ

qℓ
r3ℓj

{
erf(αrℓj)−

2αrℓj√
π

exp(−α2r2ℓj)

}
rℓj

47

c⃝STFC Section 2.4

The electrostatic contribution to the system virial can be obtained as the negative of the Coulombic
energy. However in DL POLY Classic this formal equality can be used as a check on the convergence
of the Ewald sum. The actual electrostatic virial is obtained during the calculation of the diagonal
of the stress tensor.

The electrostatic contribution to the stress tensor is given by

σ =
1

2Voϵ0

∞∑
k ̸=0

{
1− 2

(
1

4α2
+

1

k2

)
K

}
exp(−k2/4α2)

k2
|

N∑
j

qj exp(−ik · rj)|2

+
1

4πϵ0

N∗∑
j<n

qjqn
r3nj

{
erfc(αrnj) +

2αrnj√
π

exp(−α2r2nj)

}
Rnj (2.200)

− 1

4πϵ0

M∗∑
j<ℓ

qjqℓ
r3ℓj

{
erf(αrℓj)−

2αrℓj√
π

exp(−α2r2ℓj)

}
Rℓj,

where matrices K and Rℓj are defined as follows.

Kαβ = kαkβ (2.201)

Rαβ
ℓj = rαℓjr

β
ℓj (2.202)

In DL POLY Classic the full Ewald sum is handled by several routines: ewald1 and ewald1a
handle the reciprocal space terms; ewald2, ewald2 2pt, ewald2 rsq and ewald4, ewald4 2pt
handle the real space terms (with the same Verlet neighbour list routines that are used to calcu-
late the short ranged forces); and ewald3 calculates the self interaction corrections. It should be
noted that the Ewald potential and force interpolation arrays in DL POLY Classic are erc and
fer respectively.

2.4.7 Smoothed Particle Mesh Ewald

As its name implies the Smoothed Particle Mesh Ewald (SPME) method is a modification of the
standard Ewald method. DL POLY Classic implements the SPME method of Essmann et al. [48].
Formally this method is capable of treating van der Waals forces also, but in DL POLY Classic
it is confined to electrostatic forces only. The main difference from the standard Ewald method
is in its treatment of the the reciprocal space terms. By means of an interpolation procedure
involving (complex) B-splines, the sum in reciprocal space is represented on a three dimensional
rectangular grid. In this form the Fast Fourier Transform (FFT) may be used to perform the
primary mathematical operation, which is a 3D convolution. The efficiency of these procedures
greatly reduces the cost of the reciprocal space sum when the range of k vectors is large. The
method (briefly) is as follows (for full details see [48]):

1. Interpolation of the exp(−ik · rj) terms (given here for one dimension):

exp(2πiujk/L) ≈ b(k)
∞∑

ℓ=−∞
Mn(uj − ℓ)exp(2πikℓ/K) (2.203)

in which k is the integer index of the k vector in a principal direction, K is the total number
of grid points in the same direction and uj is the fractional coordinate of ion j scaled by a
factor K (i.e. uj = Ksxj). Note that the definition of the B-splines implies a dependence
on the integer K, which limits the formally infinite sum over ℓ. The coefficients Mn(u) are
B-splines of order n and the factor b(k) is a constant computable from the formula:

b(k) = exp(2πi(n− 1)k/K)

[
n−2∑
ℓ=0

Mn(ℓ+ 1)exp(2πikℓ/K)

]−1

(2.204)

48

c⃝STFC Section 2.4

2. Approximation of the structure factor S(k):

S(k) ≈ b1(k1)b2(k2)b3(k3)Q†(k1, k2, k3) (2.205)

where Q†(k1, k2, k3) is the discrete Fourier transform of the charge array Q(ℓ1, ℓ2, ℓ3) defined
as

Q(ℓ1, ℓ2, ℓ3) =
N∑
j=1

qj
∑

n1,n2,n3

Mn(u1j − ℓ1 − n1L1)Mn(u2j − ℓ2 − n2L2)Mn(u3j − ℓ3 − n3L3)

(2.206)
(in which the sums over n1,2,3 etc are required to capture contributions from all relevant
periodic cell images, which in practice means the nearest images.)

3. Approximating the reciprocal space energy Urecip:

Urecip =
1

2Voϵ0

∑
k1,k2,k3

G†(k1, k2, k3)Q(k1, k2, k3) (2.207)

in which G† is the discrete Fourier transform of the function

G(k1, k2, k3) =
exp(−k2/4α2)

k2
B(k1, k2, k3)(Q

†(k1, k2, k3))
∗ (2.208)

and where
B(k1, k2, k3) = |b1(k1)|2|b2(k2)|2|b3(k3)|2 (2.209)

and (Q†(k1, k2, k3))
∗ is the complex conjgate of Q†(k1, k2, k3). The function G(k1, k2, k3) is

thus a relatively simple product of the gaussian screening term appearing in the conventional
Ewald sum, the function B(k1, k2, k3) and the discrete Fourier transform of Q(k1, k2, k3)

4. Calculating the atomic forces, which are given formally by:

fαj = −∂Urecip

∂rαj
= − 1

Voϵ0

∑
k1,k2,k3

G†(k1, k2, k3)
∂Q(k1, k2, k3)

∂rαj
(2.210)

Fortunately, due to the recursive properties of the B-splines, these formulae are easily evaluated.
The virial and the stress tensor are calculated in the same manner as for the conventional Ewald

sum.
The DL POLY Classic subroutines required to calculate the SPME contributions are:

bspgen, which calculates the B-splines; bspcoe, which calculates B-spline coefficients; spl cexp,
which calculates the FFT and B-spline complex exponentials; ewald spme, which calculates the re-
ciprocal space contributions; spme for, which calculates the reciprocal space forces; and dlpfft3,
which calculates the 3D complex fast Fourier transform (default code only, Cray, SGI, IBM SP ma-
chines have their own FFT routines, selected at compile time and the FFTW public FFT is also
an option). These subroutines calculate the reciprocal space components of the Ewald sum only,
the real-space calculations are performed by ewald2, ewald3 and ewald 4, as for the normal
Ewald sum. In addition there are a few minor utility routines : cpy rtc copies a real array to
a complex array; ele prd is an element-for-element product of two arrays; scl csum is a scalar
sum of elements of a complex array; and set block initialises an array to a preset value (usually
zero).

49

c⃝STFC Section 2.4

2.4.8 Hautman Klein Ewald (HKE)

The method of Hautman and Klein is an adaptation of the Ewald method for systems which are
periodic in two dimensions only [49]. (DL POLY Classic assumes this periodicity is in the XY
plane.)

The HKE method gives the following formula for the electrostatic energy of a system of N
(nonbonded) ions that is overall charge neutral4:

Uc =
1

4ϵ0A

nmax∑
n=0

an

N∑
i,j

qiqjz
2n
ij

∑
g ̸=0

fn(g;α)g
2n−1exp(ig · sij) +

1

8πϵ0

N∑
i ̸=j

qiqj
∑
L

(
1

rij,L
−

nmax∑
n

anz
2n
ij

hn(sij,L;α)

s2n+1
ij,L

)
+

1

8πϵ0

N∑
i

q2i
∑
L

(1− h0(L;α))
L

− α

ϵ0π3/2

N∑
i

q2i (2.211)

In this formula A is the system area (in the XY plane), L is a 2D lattice vector representing the
2D periodicity of the system, sij is the in-plane (XY) component of the interparticle distance rij
and g is a reciprocal lattice vector. Thus

L = ℓ1a+ ℓ2b, (2.212)

where ℓ1, ℓ2 are integers and vectors a and b are the lattice basis vectors. The reciprocal lattice
vectors are:

g = n1u+ n2v (2.213)

where n1, n2 are integers u, v are reciprocal space vectors (defined in terms of the vectors a and b):

u = 2π(by,−bx)†/(axby − aybx)
v = 2π(−ay, ax)†/(axby − aybx). (2.214)

The functions hn(s;α) and fn(s;α) are the HKE convergence functions, in real and reciprocal
space respectively. (C.f. the complementary error and gaussian functions of the original Ewald
method.) However they occur to higher orders here, as indicated by the sum over subscript n,
which corresponds to terms in a Taylor expansion of r−1 in s, the in-plane distance [49]. Usually
this sum is truncated at nmax = 1, but in DL POLY Classic can go as high as nmax = 3. In the
HKE method the convergence functions are defined as follows:

hn(s;α)/s
2n+1 =

1

an(2n)!
∇2n(h0(s;α)/s) (2.215)

with
h0(s;α) = erf(αs) (2.216)

and

fn(g;α) =
1

an(2n)!
f0(g;α) (2.217)

with
f0(g;α) = erfc(g/2α). (2.218)

4The reader is warned that for the purpose of compatibility with other DL POLY Classic Ewald routines we have
defined α = 0.5/αHK , where αHK is the α parameter defined by Hautman and Klein in [49].

50

c⃝STFC Section 2.4

In DL POLY Classic the hn(s;α)/s
2n+1 functions are derived by a recursion algorithm, while the

fn(g;α) functions are obtained by direct evaluation. The coefficients an are given by

an = (−1)n(2n)!/(22n(n!)2). (2.219)

As pointed out by Hautman and Klein, the equation (2.211) allows separation of the z2nij components
via the binomial expansion, which greatly simplifies the double sum over atoms in reciprocal space.
Thus the reciprocal space part of equation (2.211) becomes

Urecip =
1

4ϵ0A

nmax∑
n=0

an
∑
g ̸=0

fn(g;α)g
2n−1

2n∑
p=0

(−1)pC2n
p Zp(g)Z

∗
2n−p(g) (2.220)

with C2n
p a binomial coefficient and

Zp(g) =
N∑
j=1

qjz
p
j exp(ig · sj) (2.221)

The force on an ion is obtained by the usual differentiation, however in this case the z components
have different expressions from the x and y.

−∂Uc

∂uj
=

1

4ϵ0A

∑
g ̸=0

nmax∑
n=0

anfn(g;α)g
2n−1

2n∑
p=0

(−1)pC2n
p

(
Zp(g)

∂Z∗
2n−p(g)

∂uj
+ Z∗

2n−p(g)
∂Zp(g)

∂uj

)

+
qj

4πϵ0

nmax∑
n=0

∑
L

N∑
ij

′anqi
∂

∂uj

(
z2nij,L

hn(sij,L;α)

s2n+1
ij,L

)
(2.222)

where uj is one of xj , yj , zj and (noting for brevity that x and y derivatives are similar)

∂Zp(g)

∂xj
= igxqjz

p
j exp(ig · sj)

∂Zp(g)

∂zj
= pqjz

p−1
j exp(ig · sj) (2.223)

and

∂

∂xj

(
z2nij,L

hn(sij,L;α)

s2n+1
ij,L

)
= sxij,L

z2nij,L
sij,L

∂

∂xj

(
hn(sij,L;α)

s2n+1
ij,L

)
∂

∂zj

(
z2nij,L

hn(sij,L;α)

s2n+1
ij,L

)
= 2nz2n−1

ij,L

hn(sij,L;α)

s2n+1
ij,L

. (2.224)

In DL POLY Classic the partial derivatives of hn(sij,L;α)/s
2n+1
ij,L are calculated by a recursion

algorithm. Note that when n = 0 there is no derivative w.r.t. z.
The virial and stress tensor terms in real space may be calculated directly from the pair forces

and interatomic distances in the usual way, and need not be discussed further. The calculation of
the reciprocal space contributions (the terms involving the fn(g;α) functions) are more difficult.
Firstly however we note that the reciprocal space contributions to σxz, σyz and σzz may be obtained
directly from the force calculations thus:

σrecipxz =
∑
j

zjf
x
j

σrecipyz =
∑
j

zjf
y
j (2.225)

σrecipzz =
∑
j

zjf
z
j

51

c⃝STFC Section 2.4

which renders the calculation of these components trivial. The remaining components are calculated
from

σrecipuv = Urecipδuv +
1

4ϵ0A

nmax∑
n=0

an
∑
g ̸=0

gugv
g2n−2

an(2n)!(
(2n− 1)f0(g;α)

g
− 1

α
√
π
exp(−g2/4α2)

)
(2.226)

2n∑
p=0

(−1)pC2n
p Zp(g)Z

∗
2n−p(g)

where u, v are one or both of the components x, y. Note that, although it is possible to define
these contributions to the stress tensor, it is not possible to calculate a pressure from them unless
a finite, arbitrary boundary is imposed on the z direction (which is an assumption applied in
DL POLY Classic, but without implications of periodicity in the z-direction). The x, y components
define the surface tension however.

For bonded molecules, as with the standard 3D Ewald sum, it is necessary to extract contribu-
tions associated with the excluded atom pairs. In the DL POLY Classic HKE implementation this
amounts to an a posteriori subtraction of the corresponding coulomb terms.

In DL POLY Classic the HKE method is handled by several subroutines: hkgen constructs
the hn(s;α) convergence functions and their derivatives; hkewald1 calculates the reciprocal space
terms; hkewald2 and hkewald3 calculate the real space terms and the bonded atom corrections
respectively. hkewald4 calculates the primary interactions in the multiple timestep implementa-
tion.

2.4.9 Reaction Field

In the reaction field method it is assumed that any given molecule is surrounded by a spherical
cavity of finite radius within which the electrostatic interactions are calculated explicitly. Outside
the cavity the system is treated as a dielectric continuum. The occurence of any net dipole within
the cavity induces a polarisation in the dielectric, which in turn interacts with the given molecule.
The model allows the replacement of the infinite Coulomb sum by a finite sum plus the reaction
field.

The reaction field model coded into DL POLY Classic is the implementation of Neumann based
on charge-charge interactions [50]. In this model, the total Coulombic potential is given by

Uc =
1

4πϵ0

∑
j<n

qjqn

[
1

rnj
+
B0r

2
nj

2R3
c

]
(2.227)

where the second term on the right is the reaction field correction to the explicit sum, with Rc the
radius of the cavity. The constant B0 is defined as

B0 =
2(ϵ1 − 1)

(2ϵ1 + 1)
, (2.228)

with ϵ1 the dielectric constant outside the cavity. The effective pair potential is therefore

U(rnj) =
1

4πϵ0
qjqn

[
1

rnj
+
B0r

2
nj

2R3
c

]
. (2.229)

This expression unfortunately leads to large fluctuations in the system Coulombic energy, due to
the large ‘step’ in the function at the cavity boundary. In DL POLY Classic this is countered by

52

c⃝STFC Section 2.4

subtracting the value of the potential at the cavity boundary from each pair contribution. The
term subtracted is

1

4πϵ0

qjqn
Rc

[
1 +

B0

2

]
. (2.230)

The effective pair force on an atom j arising from another atom n within the cavity is given by

f
j
=
qjqn
4πϵ0

[
1

r3nj
− B0

R3
c

]
rnj . (2.231)

The contribution of each effective pair interaction to the atomic virial is

W = −rnj · f j (2.232)

and the contribution to the atomic stress tensor is

σαβ = rαnjf
β
j . (2.233)

In DL POLY Classic the reaction field is handled by the routines coul3 and coul3neu.

2.4.10 Dynamical Shell Model

An atom or ion is polarisable if it develops a dipole moment when placed in an electric field. It is
commonly expressed by the equation

µ = αE, (2.234)

where µ is the induced dipole and E is the electric field. The constant α is the polarisability.
The dynamical shell model is a method of incorporating polarisability into a molecular dynamics

simulation. The method used in DL POLY Classic is that devised by Fincham et al [51] and is
known as the adiabatic shell model.

In the static shell model a polarisable atom is represented by a massive core and massless
shell, connected by a harmonic spring, hereafter called the core-shell unit. The core and shell
carry different electric charges, the sum of which equals the charge on the original atom. There
is no electrostatic interaction (i.e. self interaction) between the core and shell of the same atom.
Non-Coulombic interactions arise from the shell alone.

The harmonic spring has a potential of the form

Vspring(rij) =
1

2
kr2ij (2.235)

Sometimes an anharmonic spring is used, which is quartic in form:

Vspring(rij) =
1

2
kr2ij +

1

4
k4r

4
ij . (2.236)

Normally k is much larger than k4.
The effect of an electric field is to separate the core and shell, giving rise to a polarisation dipole.

The condition of static equilibrium gives the polarisability as:

α = q2s/k (2.237)

where qs is the shell charge and k is the force constant of the harmonic spring.
In the adiabatic method, a fraction of the atomic mass is assigned to the shell to permit a

dynamical description. The fraction of mass is chosen to ensure that the natural frequency of
vibration ν of the harmonic spring (i.e.

ν =
1

2π

[
k

x(1− x)m

]1/2
, (2.238)

53

c⃝STFC Section 2.5

with m the atomic mass,) is well above the frequency of vibration of the whole atom in the bulk
system. Dynamically the core-shell unit resembles a diatomic molecule with a harmonic bond,
however the high vibrational frequency of the bond prevents effective exchange of kinetic energy
between the core-shell unit and the remaining system. Therefore, from an initial condition in which
the core-shell units have negligible internal vibrational energy, the units will remain close to this
condition throughout the simulation. This is essential if the core shell unit is to maintain a net
polarisation. (In practice there is a slow leakage of kinetic energy into the core-shell units, but this
should should not amount to more than a few percent of the total kinetic energy.)

The calculation of the virial and stress tensor in this model is based on that for a diatomic
molecule with charged atoms. The electrostatic and short ranged forces are calculated as described
above. The forces of the harmonic springs are calculated as described for intramolecular harmonic
bonds. The relationship between the kinetic energy and the temperature is different however, as the
core-shell unit is permitted only three translational degrees of freedom, and the degrees of freedom
corresponding to rotation and vibration of the unit are discounted (the kinetic energy of these is
regarded as zero).

In DL POLY Classic the shell forces are handled by the routine shlfrc. The kinetic energy is
calculated by corshl and the routine shqnch performs the temperature scaling. The dynamical
shell model is used in conjunction with the methods for long ranged forces described above.

2.4.11 Relaxed Shell Model

The relaxed shell model is based on the same electrostatic principles as the dynamical shell model
but in this case the shell is assigned a zero mass. This means the shell cannot be driven dynamically
and instead the procedure is first to relax the shell to a condition of zero (or at least negligible)
force at the start of the integration of the atomic motion and then integrate the motion of the finite
mass core by conventional molecular dynamics. The relaxation of the shells in DL POLY Classic is
accomplished using conjugate gradients. Since each timestep of the algorithm entails a minimisation
operation the cost per timestep for this algorithm is considerably more than the adiabatic shell
model, however the integration timestep permitted is much larger (as much as a factor 10) so
evolution through phase space is not necessarily very different in cost. A description of the method
is presented in [52].

2.5 Integration algorithms

2.5.1 The Verlet Algorithms

DL POLY integration algorithms are based on the Verlet scheme, which is both time reversible
and simple [14]. It generates trajectories in the microcanonical (NVE) ensemble in which the total
energy (kinetic plus potential energy) is conserved. If this property drifts or fluctuates excessively
in the course of a simulation it indicates that the timestep is too large or the potential cutoffs too
small (relative r.m.s. fluctuations in the total energy of 10−5 are typical with this algorithm).

DL POLY Classic contains two versions of the Verlet algorithm. The first is the Verlet leapfrog
(LF) algorithm and the second is the velocity Verlet (VV).

2.5.1.1 Verlet Leapfrog

The LF algorithm requires values of position (r) and force (f) at time t while the velocities (v) are
half a timestep behind. The first step is to advance the velocities to t+ (1/2)∆t by integration of
the force:

v(t+
1

2
∆t)← v(t− 1

2
∆t) + ∆t

f(t)

m
(2.239)

54

c⃝STFC Section 2.5

where m is the mass of a site and ∆t is the timestep.
The positions are then advanced using the new velocities:

r(t+∆t)← r(t) + ∆t v(t+
1

2
∆t) (2.240)

Molecular dynamics simulations normally require properties that depend on position and ve-
locity at the same time (such as the sum of potential and kinetic energy). In the LF algorithm the
velocity at time t is obtained from the average of the velocities half a timestep either side of time t:

v(t) =
1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
(2.241)

The full selection of LF integration algorithms within DL POLY Classic is as follows:

nve 1 Verlet leaprog with SHAKE
nveq 1 Rigid units with FIQA and SHAKE
nveq 2 Linked rigid units with QSHAKE
nvt b1 Constant T (Berendsen [22]) with SHAKE
nvt e1 Constant T (Evans [21]) with SHAKE
nvt h1 Constant T (Hoover [23]) with SHAKE
nvtq b1 Constant T (Berendsen [22]) with FIQA and SHAKE
nvtq b2 Constant T (Berendsen [22]) with QSHAKE
nvtq h1 Constant T (Hoover [23]) with FIQA and SHAKE
nvtq h2 Constant T (Hoover [23]) with QSHAKE
npt b1 Constant T,P (Berendsen [22]) with FIQA and SHAKE
npt h1 Constant T,P+ (Hoover [23]) with SHAKE
nptq b1 Constant T,P (Berendsen [22]) with FIQA and SHAKE
nptq b2 Constant T,P (Berendsen [22]) with QSHAKE
nptq h1 Constant T,P (Hoover [23]) with FIQA and SHAKE
nptq h2 Constant T,P (Hoover [23]) with QSHAKE
nst b1 Constant T,σ (Berendsen [22]) with SHAKE
nst h1 Constant T,σ (Hoover [23]) with SHAKE
nstq b1 Constant T,σ (Berendsen [22]) with FIQA and SHAKE
nstq b2 Constant T,σ (Berendsen [22]) with QSHAKE
nstq h1 Constant T,σ (Hoover [23]) with FIQA and SHAKE
nstq h2 Constant T,σ (Hoover [23]) with QSHAKE

In the above table the FIQA algorithm is Fincham’s Implicit Quaternion Algorithm [17] and
QSHAKE is the DL POLY Classic algorithm combining rigid bonds and rigid bodies in the same
molecule [19].

2.5.1.2 Velocity Verlet

The VV algorithm assumes that positions, velocities and forces are known at each full timestep.
The algorithm proceeds in two stages as follows.

In the first stage a half step velocity is calculated:

v(t+
1

2
∆t)← v(t) +

1

2
∆t

f(t)

m
(2.242)

55

c⃝STFC Section 2.5

and then the full timestep position is obtained:

r(t+∆t)← r(t) + ∆t v(t+
1

2
∆t) (2.243)

In the second stage, using the new positions, the next update of the forces f(t +∆t) is obtained,
from which the full step velocity is calculated using:

v(t+∆t)← v(t+
1

2
∆t) +

1

2
∆t

f(t+∆t)

m
(2.244)

Thus at the end of the two stages full synchronisation of the positions, forces and velocities is
obtained.

The full selection of VV integration algorithms within DL POLY Classic is as follows:

nvevv 1 Velocity Verlet with RATTLE
nveqvv 1 Rigid units with NOSQUISH and RATTLE
nveqvv 2 Linked rigid units with QSHAKE
nvtvv b1 Constant T (Berendsen [22]) with RATTLE
nvtvv e1 Constant T (Evans [21]) with RATTLE
nvtvv h1 Constant T (Hoover [23]) with RATTLE
nvtqvv b1 Constant T (Berendsen [22]) with NOSQUISH and RATTLE
nvtqvv b2 Constant T (Berendsen [22]) with QSHAKE
nvtqvv h1 Constant T (Hoover [23]) with NOSQUISH and RATTLE
nvtqvv h2 Constant T (Hoover [23]) with QSHAKE
nptvv b1 Constant T,P (Berendsen [22]) with NOSQUISH and RATTLE
nptvv h1 Constant T,P+ (Hoover [23]) with RATTLE
nptqvv b1 Constant T,P (Berendsen [22]) with NOSQUISH and RATTLE
nptqvv b2 Constant T,P (Berendsen [22]) with QSHAKE
nptqvv h1 Constant T,P (Hoover [23]) with NOSQUISH and RATTLE
nptqvv h2 Constant T,P (Hoover [23]) with QSHAKE
nstvv b1 Constant T,σ (Berendsen [22]) with RATTLE
nstvv h1 Constant T,σ (Hoover [23]) with RATTLE
nstqvv b1 Constant T,σ (Berendsen [22]) with NOSQUISH and RATTLE
nstqvv b2 Constant T,σ (Berendsen [22]) with QSHAKE
nstqvv h1 Constant T,σ (Hoover [23]) with NOSQUISH and RATTLE
nstqvv h2 Constant T,σ (Hoover [23]) with QSHAKE

In the above table the NOSQUISH algorithm is the rotational algorithm of Miller et al [18] and
QSHAKE is the DL POLY Classic algorithm combining rigid bonds and rigid bodies in the same
molecule [19].

2.5.1.3 Temperature and Energy Conservation

For both VV and LF the instantaneous temperature can be obtained from the atomic velocities
assuming the system has no net momentum:

T =

∑N
i=1miv

2
i (t)

kBf
(2.245)

56

c⃝STFC Section 2.5

where i labels particles (which can be atoms or rigid molecules), N the number of particles in the
system, kB Boltzmanns constant and f the number of degrees of freedom in the system (3N − 3 if
the system is periodic and without constraints).

The total energy of the system is a conserved quantity

HNVE = U +KE (2.246)

where U is the potential energy of the system and KE the kinetic energy at time t.

2.5.2 Bond Constraints

2.5.2.1 SHAKE

The SHAKE algorithm for bond constraints was devised by Ryckaert et al. [15] and is based
on the Verlet leapfrog integration scheme [14]. It is a two stage scheme. In the first stage the
leapfrog algorithm calculates the motion of the atoms in the system assuming a complete absence
of the rigid bond forces. The positions of the atoms at the end of this stage do not conserve the
distance constraint required by the rigid bond and a correction is necessary. In the second stage
the deviation in the length of a given rigid bond is used retrospectively to compute the constraint
force needed to conserve the bondlength. It is relatively simple to show that the constraint force
has the form

Gij ≈
µij(d

2
ij − d′2ij)

2∆t2doij · d′ij
doij (2.247)

where: µij is the reduced mass of the two atoms connected by the bond; doij and d
′
ij are the original

and intermediate bond vectors; dij is the constrained bondlength; and ∆t is the Verlet integration
timestep. It should be noted that this formula is an approximation only.

d

1

1

2

1’

2

2’

d

G

G

o

12

12

21

12

Figure 2.7: The SHAKE algorithm

The algorithm calculates the constraint force G12 = −G21 that conserves the bondlength d12
between atoms 1 and 2, following the initial movement to positions 1′ and 2′ under the unconstrained
forces F 1 and F 2.

57

c⃝STFC Section 2.5

For a system of simple diatomic molecules, computation of the constraint force will, in principle,
allow the correct atomic positions to be calculated in one pass. However in the general polyatomic
case this correction is merely an interim adjustment, not only because the above formula is ap-
proximate, but the successive correction of other bonds in a molecule has the effect of perturbing
previously corrected bonds. The SHAKE algorithm is therfore iterative, with the correction cycle
being repeated for all bonds until each has converged to the correct length, within a given tolerance.
The tolerance may be of the order 10−4 Å to 10−8 Å depending on the precision desired.

The procedure may be summarised as follows:

1. All atoms in the system are moved using the Verlet algorithm, assuming an absence of rigid
bonds (constraint forces). (This is stage 1 of the SHAKE algorithm.)

2. The deviation in each bondlength is used to calculate the corresponding constraint force
(2.247) that (retrospectively) ‘corrects’ the bond length.

3. After the correction (2.247) has been applied to all bonds, every bondlength is checked. If the
largest deviation found exceeds the desired tolerance, the correction calculation is repeated.

4. Steps 2 and 3 are repeated until all bondlengths satisfy the convergence criterion (This iter-
ation constitutes stage 2 of the SHAKE algorithm).

DL POLY Classic implements a parallel version of this algorithm [13] (see section 2.6.9). The
subroutine nve 1 implements the Verlet leapfrog algorithm with bond constraints for the NVE
ensemble. The routine rdshake 1 is called to apply the SHAKE corrections to position.

It should be noted that the fully converged constraint forces Gij make a contribution to the
system virial and the stress tensor.

The contribution to be added to the atomic virial (for each constrained bond) is

W = −dij ·Gij . (2.248)

The contribution to be added to the atomic stress tensor is given by

σαβ = dαijG
β
ij , (2.249)

where α and β indicate the x, y, z components. The atomic stress tensor derived from the pair
forces is symmetric.

2.5.2.2 RATTLE

RATTLE [16] is the VV version of SHAKE. It has two parts: the first constrains the bondlength
and the second adds an additional constaint to the velocities of the atoms in the constrained bond.
The first of these constraints leads to an expression for the constriant force similar to that for
SHAKE:

Gij ≈
µij(d

2
ij − d′2ij)

∆t2doij · d′ij
doij (2.250)

Note that this formula differs from equation (2.247) by a factor of 2. This constraint force is
applied during the first stage of the velocity Verlet algorithm.

The second constraint condition attempts to maintain the relative velocities of the atoms sharing
a bond to a direction perpendicular to the bond vector. This provides another constraint force:

H ij ≈ −
2µij
∆t

dij · (vj − vi)
d2ij

dij (2.251)

58

c⃝STFC Section 2.5

This constraint force is applied during the second stage of the velocity Verlet algorithm. Both
constraint force calculations are iterative and are brought to convergence before proceeding to the
next stage of the velocity Verlet scheme.

DL POLY Classic implements a parallel version of RATTLE that is based on the same ap-
proach as SHAKE [13] (see section 2.6.9). The subroutine nvevv 1 implements the velocity Verlet
algorithm with bond constraints in the NVE ensemble. The subroutine rdrattle r is called to
apply the corrections to atom positions and the subroutine rdrattle v is called to correct the
atom velocities.

2.5.3 Potential of Mean Force (PMF) Constraints and the Evaluation of Free
Energy

A generalization of bond constraints can be made to constrain a system to some point along a
reaction coordinate. A simple example of such a reaction coordinate would be the distance between
two ions in solution. If a number of simulations are conducted with the system constrained to
different points along the reaction coordinate then the mean constraint force may be plotted as a
function of reaction coordinate and the function integrated to obtain the free energy for the overall
process [53]. The PMF constraint force, virial and contributions to the stress tensor are obtained
in a manner analagous to that for a bond constraint (see previous section). The only difference
is that the constraint is now applied between the centres of two groups which need not be atoms
alone. DL POLY Classic reports the PMF constraint virial, W, for each simulation. Users can
convert this to the PMF constraint force from

GPMF = −WPMF/dPMF

where dPMF is the constraint distance between the two groups used to define the reaction coordinate.
DL POLY Classic can calculate the PMF using either LF or VV algorithms. Subroutines pm-

flf and pmf shake are used in the LF scheme and subroutines pmfvv, pmf rattle r and
pmf rattle v are used in the VV scheme.

2.5.4 Thermostats

The system may be coupled to a heat bath to ensure that the average system temperature is
maintained close to the requested temperature, Text. When this is done the equations of motion
are modified and the system no longer samples the microcanonical ensemble. Instead trajectories
in the canonical (NVT) ensemble, or something close to it are generated. DL POLY Classic comes
with three different thermostats: Nosé -Hoover [23], Berendsen [22], and Gaussian constraints [21].
Of these only the Nosé-Hoover algorithm generates trajectories in the canonical (NVT) ensemble.
The other methods will produce properties that typically differ from canonical averages by O(1/N)
[14]

2.5.4.1 Nosé - Hoover Thermostat

In the Nosé-Hoover algorithm [23] Newton’s equations of motion are modified to read:

dr(t)

dt
= v(t)

dv(t)

dt
=

f(t)

m
− χ(t)v(t) (2.252)

(2.253)

59

c⃝STFC Section 2.5

The friction coefficient, χ, is controlled by the first order differential equation

dχ(t)

dt
=
NfkB
Q

(T (t)− Text) (2.254)

where Q = NfkBTextτ
2
T is the effective ‘mass’ of the thermoststat, τT is a specified time constant

(normally in the range [0.5, 2] ps) and Nf is the number of degrees of freedom in the system. T (t)
is the instantaneous temperature of the system at time t.

In the LF version of DL POLY Classic χ is stored at half timesteps as it has dimensions of
(1/time). The integration takes place as:

χ(t+
1

2
∆t) ← χ(t− 1

2
∆t) + ∆t

NfkB
Q

(T (t)− Text)

χ(t) ← 1

2

[
χ(t− 1

2
∆t) + χ(t+

1

2
∆t)

]
v(t+

1

2
∆t) ← v(t− 1

2
∆t) + ∆t

[
f(t)

m
− χ(t)v(t)

]

v(t) ← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
r(t+∆t) ← r(t) + ∆t v(t+

1

2
∆t) (2.255)

Since v(t) is required to calculate T (t) and itself, the algorithm requires several iterations to obtain
self consistency. In DL POLY Classic the number of iterations is set to 3 (4 if the system has bond
constraints). The iteration procedure is started with the standard Verlet leapfrog prediction of v(t)
and T (t). The conserved quantity is derived from the extended Hamiltonian for the system which,
to within a constant, is the Helmholtz free energy:

HNVT = U +KE +
1

2
Qχ(t)2 +

Q

τ2T

∫ t

o
χ(s)ds (2.256)

If bond constraints are present an extra iteration is required due to the call to the SHAKE
routine. The algorithm is implemented in the DL POLY routine nvt h1, for systems with bond
constraints.

In the VV version of DL POLY Classic the Hoover algorithm is split into stages in accordance
with the principles of Martyna et al [20] for designing reversible integrators. The scheme applied
here is:

χ(t+
1

2
∆t) ← χ(t) +

∆tNfkB
2Q

(T (t)− Text)

v′(t) ← v(t)− ∆t

2
χ(t+

1

2
∆t)v(t)

v(t+
1

2
∆t) ← v′(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t)

call rattle(R)

v′(t+∆t) ← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
call rattle(V)

60

c⃝STFC Section 2.5

χ(t+∆t) ← χ(t+
1

2
∆t) +

∆tNfkB
2Q

(T (t+∆t)− Text)

v(t+∆t) ← v′(t+∆t)− ∆t

2
χ(t+∆t)v′(t+∆t) (2.257)

Routines rattle(R) and rattle(V) apply the bondlength and velocity constraint formulae (2.250)
and (2.251) respectively. The equations have the same conserved variable (HNVT) as the LF scheme.
The integration is performed by the subroutine nvtvv h1 which calls subroutines rattle r,
rattle v and nvtscale.

2.5.4.2 Berendsen Thermostat

In the Berendsen algorithm the instantaneous temperature is pushed towards the desired temper-
ature by scaling the velocities at each step:

χ(t) ←
[
1 +

∆t

τT

(
Text
T (t)

− 1

)]1/2
(2.258)

The DL POLY Classic LF routines implement this thermostat as follows.

v(t+
1

2
∆t) ←

[
v(t− 1

2
∆t) + ∆t

f(t)

m

]
χ(t)

v(t) ← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
r(t+∆t) ← r(t) + ∆t v(t+

1

2
∆t) (2.259)

As with the Nosé-Hoover thermostat iteration is required to obtain self consistency of χ(t), v(t)
and T (t), although it should be noted χ has different roles in the two thermostats. The Berendsen
algorithm conserves total momentum but not energy. Here again the presence of constraint bonds
requires an additional iteration with one application of SHAKE corrections. The algorithm is
implemented in the DL POLY routine nvt b1, for systems including bond constraints.

The VV implementation of Berendsen’s algorithm proceeds as folows:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t)

call rattle(R)

v′(t+∆t) ← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
call rattle(V)

χ ←
[
1 +

∆t

τT

(T
Text

− 1

)]1/2
v(t+∆t) ← χ v′(t+∆t) (2.260)

Routines rattle(R) and rattle(V) apply the bondlength and velocity constraint formulae (2.250)
and (2.251) respectively. The integration is performed by the subroutine nvtvv b1 which calls
subroutines rattle r and rattle v.

61

c⃝STFC Section 2.5

2.5.5 Gaussian Constraints

Kinetic temperature can be made a constant of the equations of motion by imposing an additional
constraint on the system. If one writes the equations of motions as :

dr(t)

dt
= v(t)

dv(t)

dt
=

f(t)

m
− χ(t)v(t) (2.261)

(2.262)

with the temperature constraint

dT
dt
∝ d

dt

(∑
i

(mivi)
2

)
∝
∑
i

m2
i vi(t) · f i(t) = 0 (2.263)

then choosing

χ =

∑
imivi(t).f i(t)∑

im
2
i v

2
i (t)

(2.264)

minimises the “least squares” differences between the Newtonian and constrained trajectories.
Following Brown and Clarke [54] the algorithm is implemented in the LF scheme by calculating

η = 1/(1 + χ∆t/2)

η ←

√
Text
T

v(t+
1

2
∆t) ← (2η − 1)v(t− 1

2
∆t) + η∆t

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (2.265)

where T is obtained from standard Verlet leapfrog integration. Only one iteration is needed (two
if the system has bond constraints) to constrain the instantaneous temperature to exactly Text
however energy is not conserved by this algorithm. The algorithm is implemented in the DL POLY
routine nvt e1 for systems with bond constraints.

The VV implementation of Evan’s thermostat is as follows

χ(t) ←
∑
i

mivi(t).f i(t)/
∑
i

m2
i v

2
i (t)

v′(t) ← v(t)− ∆t

2
χ(t)v(t)

v(t+
1

2
∆t) ← v′(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t)

call rattle(R)

v′(t+∆t) ← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
call rattle(V)

χ(t+∆t) ←
∑
i

miv
′
i(t+∆t).f

i
(t+∆t)/

∑
i

m2
i v

′2
i (t+∆t)

v(t+∆t) ← v′(t+∆t)− ∆t

2
χ(t+∆t)v′(t+∆t) (2.266)

62

c⃝STFC Section 2.5

Routines rattle(R) and rattle(V) apply the bondlength and velocity constraint formulae (2.250)
and (2.251) respectively. The integration is performed by the subroutine nvtvv e1 which calls
subroutines rattle r and rattle v.

2.5.6 Barostats

The size and shape of the simulation cell may be dynamically adjusted by coupling the system to
a barostat in order to obtain a desired average pressure (Pext) and/or isotropic stress tensor (σ).
DL POLY Classic has two such algorithms: a Hoover barostat and the Berendsen barostat. Only
the former has a well defined conserved quantity.

2.5.6.1 The Hoover Barostat

DL POLY Classic uses the Melchionna modification of the Hoover algorithm [55] in which the
equations of motion couple a Nosé - Hoover thermostat and a barostat.

Cell size variation

For isotropic fluctuations the equations of motion are:

dr(t)

dt
= v(t) + η(r(t)−R0)

dv(t)

dt
=

f(t)

m
− [χ(t) + η(t)] v(t)

dχ(t)

dt
=

NfkB
Q

(T (t)− Text) +
1

Q
(Wη(t)2 − kBText)

dη(t)

dt
=

3

W
V (t)(P(t)− Pext)− χ(t)η(t)

dV (t)

dt
= [3η(t)]V (t) (2.267)

where Q = NfkBTextτ
2
T is the effective ‘mass’ of the thermostat and W = NfkBTextτ

2
P is the

effective ‘mass’ of the barostat. Nf is the number of degrees of freedom, η is the barostat friction
coefficient, R0 the system centre of mass, τT and τP are specified time constants for temperature
and pressure fluctuations respectively, P(t) is the instantaneous pressure and V the system volume.

The conserved quantity is, to within a constant, the Gibbs free energy of the system:

HNPT = U +KE + PextV (t) +
1

2
Qχ(t)2 +

1

2
Wη(t)2 +

∫ t

o
(
Q

τ2T
χ(s) + kBText)ds (2.268)

The algorithm is readily implemented in the LF scheme as:

χ(t+
1

2
∆t) ← χ(t− 1

2
∆t) +

∆tNfkB
Q

(T (t)− Text) +
∆t

Q
(Wη(t)2 − kBText)

χ(t) ← 1

2

[
χ(t− 1

2
∆t) + χ(t+

1

2
∆t)

]
η(t+

1

2
∆t) ← η(t− 1

2
∆t) + ∆t

{
3V (t)

W
(P(t)− Pext)− χ(t)η(t)

}
η(t) ← 1

2

[
η(t− 1

2
∆t) + η(t+

1

2
∆t)

]
v(t+

1

2
∆t) ← v(t− 1

2
∆t) + ∆t

[
f(t)

m
− [χ(t) + η(t)] v(t)

]

63

c⃝STFC Section 2.5

v(t) ← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
r(t+∆t) ← r(t) + ∆t

(
v(t+

1

2
∆t) + η(t+

1

2
∆t)

[
r(t+

1

2
∆t)−R0

])
r(t+

1

2
∆t) ← 1

2
[r(t) + r(t+∆t)] (2.269)

Like the LF Nosé-Hoover thermostat, several iterations are required to obtain self consistency.
DL POLY Classic uses 4 iterations (5 if bond constraints are present) with the standard Verlet
leapfrog predictions for the initial estimates of T (t), P(t), v(t) and r(t + 1

2∆t). Note also that
the change in box size requires the SHAKE algorithm to be called each iteration with the new cell
vectors and volume obtained from:

V (t+∆t) ← V (t) exp

[
3∆t η(t+

1

2
∆t)

]
H(t+∆t) ← exp

[
∆t η(t+

1

2
∆t)

]
H(t) (2.270)

where H is the cell matrix whose columns are the three cell vectors a, b, c.
The isotropic changes to cell volume are implemented in the DL POLY LF routine npt h1

which allows for systems containing bond constraints.
The implementation in the VV algorithm follows the scheme:

χ(t+
1

2
∆t) ← χ(t) +

∆tNfkB
2Q

(T (t)− Text) +
∆t

2Q
(Wη(t)2 − kBText)

v′(t) ← v(t)− ∆t

2
χ(t+

1

2
∆t)v(t)

η(t+
1

2
∆t) ← η(t) +

∆t

2

{
3V (t)

W
(P(t)− Pext)− χ(t)η(t)

}
v′′(t) ← v′(t)− ∆t

2
η(t+

1

2
∆t)v′(t)

v(t+
1

2
∆t) ← v′′(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t)

call rattle(R)

V (t+∆t) ← V (t) exp

[
3∆t η(t+

1

2
∆t)

]
H(t+∆t) ← exp

[
∆t η(t+

1

2
∆t)

]
H(t)

v′(t+∆t) ← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
call rattle(V)

η(t+∆t) ← η(t+
1

2
∆t) +

∆t

2

{
V (t+∆t)

W
(P(t+∆t)− Pext)− χ(t+∆t)η(t+∆t)

}
v′′(t+∆t) ← v′(t+∆t)− ∆t

2
η(t+∆t)v′(t+∆t)

χ(t+∆t) ← χ(t+
1

2
∆t) +

∆tNfkB
2Q

(T (t+∆t)− Text) +
∆t

2Q
(Wη(t+∆t)2 − kBText)

v(t+∆t) ← v′′(t+∆t) +
∆t

2
χ(t+∆t)v′′(t+∆t) (2.271)

64

c⃝STFC Section 2.5

Routines rattle(R) and rattle(V) apply the bondlength and velocity constraint formulae (2.250)
and (2.251) respectively. The equations have the same conserved variable (HNPT) as the LF scheme.
The integration is performed by the subroutine nvtvv h1 which calls subroutines rattle r,
rattle v, nptscale t and nptscale p.

Cell size and shape variation

The isotropic algorithms may be extended to allowing the cell shape to vary by defining η as a
tensor, η.

The LF equations of motion are implemented as:

χ(t+
1

2
∆t) ← χ(t− 1

2
∆t) +

∆tNfkB
Q

(T (t)− Text) +
∆t

Q
(WTr(η(t))2 − 9kBText)

χ(t) ← 1

2

[
χ(t− 1

2
∆t) + χ(t+

1

2
∆t)

]
η(t+

1

2
∆t) ← η(t− 1

2
∆t) +

∆tV (t)

W

(
σ(t)− Pext1

)
−∆tχ(t)η(t)

η(t) ← 1

2

[
η(t− 1

2
∆t) + η(t+

1

2
∆t)

]
v(t+

1

2
∆t) ← v(t− 1

2
∆t) + ∆t

[
f(t)

m
−
[
χ(t)1+ η(t)

]
v(t)

]

v(t) ← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
r(t+∆t) ← r(t) + ∆t

(
v(t+

1

2
∆t) + η(t+

1

2
∆t)

[
r(t+

1

2
∆t)−R0

])
r(t+

1

2
∆t) ← 1

2
[r(t) + r(t+∆t)] (2.272)

where 1 is the identity matrix and σ the pressure tensor. The new cell vectors are calculated from

H(t+∆t) ← exp

[
∆t η(t+

1

2
∆t)

]
H(t) (2.273)

DL POLY Classic uses a power series expansion truncated at the quadratic term to approximate
the exponential of the tensorial term. The new volume is found from

V (t+∆t)← V (t) exp
[
∆t T r(η)

]
(2.274)

The conserved quantity is

HNST = U +KE + PextV (t) +
1

2
Qχ(t)2 +

1

2
WTr(η(t))2 +

∫ t

o
χ(s)(

Q

τ2T
+ 9kBText)ds (2.275)

This algorithm is implemented in the routine nst h1, with bond constraints.
The VV version of this algorithm is implemented as:

χ(t+
1

2
∆t) ← χ(t) +

∆tNfkB
2Q

(T (t)− Text) +
∆t

2Q
(WTr(η(t))2 − 9kBText)

v′(t) ← v(t)− ∆t

2
χ(t+

1

2
∆t)v(t)

η(t+
1

2
∆t) ← η(t) +

∆t

2

{
V (t)

W
(σ(t)− Pext1)− χ(t)Tr(η(t))

}
65

c⃝STFC Section 2.5

v′′(t) ← v′(t)− ∆t

2
η(t+

1

2
∆t)v′(t)

v(t+
1

2
∆t) ← v′′(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t)

call rattle(R)

V (t+∆t) ← V (t) exp

[
3∆t η(t+

1

2
∆t)

]
H(t+∆t) ← exp

[
∆t η(t+

1

2
∆t)

]
H(t)

v′(t+∆t) ← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
call rattle(V)

η(t+∆t) ← η(t+
1

2
∆t) +

∆t

2

{
V (t+∆t)

W
(η(t+∆t)− Pext1)− χ(t+∆t)Tr(η(t+∆t))

}
v′′(t+∆t) ← v′(t+∆t)− ∆t

2
η(t+∆t)v′(t+∆t)

χ(t+∆t) ← χ(t+
1

2
∆t) +

∆tNfkB
2Q

(T (t+∆t)− Text) +
∆t

2Q
(WTr(η(t+∆t))2 − 9kBText)

v(t+∆t) ← v′′(t+∆t) +
∆t

2
χ(t+∆t)v′′(t+∆t) (2.276)

Routines rattle(R) and rattle(V) apply the bondlength and velocity constraint formulae (2.250)
and (2.251) respectively. The equations have the same conserved variable (HNST) as the LF scheme.
The integration is performed by the subroutine nvtvv h1 which calls subroutines rattle r,
rattle v, nstscale t and nstscale p.

2.5.6.2 Berendsen Barostat

With the Berendsen barostat the system is made to obey the equation of motion

dP
dt

= (Pext − P)/τP (2.277)

Cell size variations

In the isotropic implementation, at each step the MD cell volume is scaled by by a factor η and
the coordinates, and cell vectors, by η1/3 where

η = 1− β∆t

τP
(Pext − P) (2.278)

and β is the isothermal compressibility of the system. The Berendesen thermostat is applied at the
same time. In practice β is a specified constant which DL POLY Classic takes to be the isothermal
compressibility of liquid water. The exact value is not critical to the algorithm as it relies on the
ratio τP /β. τP is specified by the user.

The LF version of this algorithm is implemented in npt b1 with 4 or 5 iterations used to
obtain self consistency in the v(t). It calls rdshake 1 to handle constraints. The VV version is
implemented in subroutine nvtvv b1, which calls constraint subroutines rattle r and rattle v.

Cell size and shape variations

66

c⃝STFC Section 2.5

The extension of the isotropic algorithm to anisotropic cell variations is straightforward. The
tensor η is defined by

η = 1− β∆t

τP
(Pext1− σ) (2.279)

and the new cell vectors given by
H(t+∆t)← ηH(t) (2.280)

As in the isotropic case the Berendsen thermostat is applied simultaneously and 4 or 5 iterations
are used to obtain convergence. The LF version of the algorithm is implemented in subroutine
nst b1 and the VV version in nstvv b1. The former calls rdshake 1 to handle constraints and
the latter calls subroutines rattle r and rattle v.

2.5.7 Rigid Bodies and Rotational Integration Algorithms

2.5.7.1 Description of Rigid Body Units

A rigid body unit is a collection of point atoms whose local geometry is time invariant. One way to
enforce this in a simulation is to impose a sufficient number of bond constraints between the atoms
in the unit. However, in many cases this is may be either problematic or impossible. Examples in
which it is impossible to specify sufficient bond constraints are

1. linear molecules with more than 2 atoms (e.g. CO2)

2. planar molecules with more than three atoms (e.g. benzene).

Even when the structure can be defined by bond constraints the network of bonds produced may
be problematic. Normally, they make the iterative SHAKE procedure slow, particularly if a ring
of constraints is involved (as occurs when one defines water as a constrained triangle). It is also
possible, inadvertently, to over constrain a molecule (e.g. by defining a methane tetrahedron to
have 10 rather than 9 bond constraints) in which case the SHAKE procedure will become unstable.
In addition, massless sites (e.g. charge sites) cannot be included in a simple constraint approach
making modelling with potentials such as TIP4P water impossible.

All these problems may be circumvented by defining rigid body units, the dynamics of which
may be described in terms of the translational motion of the center of mass (COM) and rotation
about the COM. To do this we need to define the appropriate variables describing the position,
orientation and inertia of a rigid body, and the rigid body equations of motion. 5

The mass of a rigid unit M is the sum of the atomic masses in that unit:

M =
Nsites∑
j=1

mj . (2.281)

where mj is the mass of an atom and the sum includes all sites (Nsites) in the body. The position
of the rigid unit is defined as the location of its centre of mass R:

R =
1

M

Nsites∑
j=1

mjrj , (2.282)

5An alternative approach is to define “basic” and “secondary” particles. The basic particles are the minimun
number needed to define a local body axis system. The remaining particle positions are expressed in terms of the
COM and the basic particles. Ordinary bond constraints can then be applied to the basic particles provided the forces
and torques arising from the secondary particles are transferred to the basic particles in a physically meaningful way.

67

c⃝STFC Section 2.5

where rj is the position vector of atom j. The rigid body translational velocity V is defined by:

V =
1

M

Nsites∑
j=1

mjvj , (2.283)

where vj is the velocity of atom j. The net translational force acting on the rigid body unit is the
vector sum of the forces acting on the atoms of the body:

F =
Nsites∑
j=1

f
j

(2.284)

where f
j
is the force on a rigid unit site

A rigid body also has associated with it a rotational inertia matrix I, whose components are
given by

Iαβ =
Nsites∑

j

mj(d
2
jδαβ − dαj r

β
j) (2.285)

where dj is the displacement vector of the atom j from the COM, and is given by:

dj = rj −R. (2.286)

It is common practice in the treatment of rigid body motion to define the position R of the
body in a universal frame of reference (the so called laboratory or inertial frame), but to describe
the moment of inertia tensor in a frame of reference that is localised in the rigid body and changes
as the rigid body rotates. Thus the local body frame is taken to be that in which the rotational
inertia tensor Î is diagonal and the components satisfy Ixx ≥ Iyy ≥ Izz. In this local frame (the so
called Principal Frame) the inertia tensor is therefore constant.

The orientation of the local body frame with respect to the space fixed frame is described via
a four dimensional unit vector, the quaternion

q = [q0, q1, q2, q3]
T , (2.287)

and the rotational matrix R to transform from the local body frame to the space fixed frame is the
unitary matrix

R =

 q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 (2.288)

so that if d̂j is the position of an atom in the local body frame (with respect to its COM), its
position in the universal frame (w.r.t. its COM) is given by

dj = R d̂j (2.289)

With these variables defined we can now consider the equations of motion for the rigid body unit.

2.5.7.2 Integration of the Rigid Body Equations of Motion

The equations of translational motion of a rigid body are the same as those describing the motion
of a single atom, except that the force is the total force acting on the rigid body i.e. F in equation
(2.284) and the mass is the total mass of the rigid body unit i.e. M in equation (2.281). These

68

c⃝STFC Section 2.5

equations can be integrated by the standard Verlet LF or VV algorithms described in the previous
sections. Thus we need only consider the rotational motion here.

The rotational equation of motion for a rigid body is

τ =
d

dt
J =

d

dt

(
Iω
)
, (2.290)

in which J is the angular momentum of the rigid body defined by the expression

J =
Nsites∑
j=1

mjdj × vj , (2.291)

and ω is the angular velocity.
The vector τ is the torque acting on the body in the universal frame and is given by

τ =
Nsites∑
j=1

dj × f j . (2.292)

The rotational equations of motion, written in the local frame of the rigid body, are given by
Euler’s equations

˙̂ωx =
τ̂x

Îxx
+ (Îyy − Îzz)ω̂yω̂z

˙̂ωy =
τ̂y

Îyy
+ (Îzz − Îxx)ω̂zω̂z (2.293)

˙̂ωy =
τ̂z

Îzz
+ (Îxx − Îyy)ω̂xω̂y

The vector ω̂ is the angular velocity transformed to the local body frame. Integration of ω̂ is
complicated by the fact that as the rigid body rotates , so does the local reference frame. So it
is necessary to integrate equations (2.293) simultaneously with an integration of the quaternions
describing the orientiation of the rigid body. The equation describing this is:

q̇0
q̇1
q̇2
q̇3

 =
1

2

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

0
ω̂x

ω̂y

ω̂z

 (2.294)

Rotational motion in DL POLY Classic is handled by two different methods. For LF implemen-
tation, the Fincham Implicit Quaternion Algorithm (FIQA) is used [17]. The VV implementation
uses the NOSQUISH algorithm of Miller et al. [18].

The LF implementation begins by integrating the angular velocity equation in the local frame.

ω̂(t+
∆t

2
) = ω̂(t− ∆t

2
) + ∆t ˙̂ω(t) (2.295)

The new quaternions are found using the FIQA algorithm. In this algorithm the new quaternions
are found by solving the implicit equation

q(t+∆t) = q(t) +
∆t

2

(
Q[q(t)]ŵ(t) +Q[q(t+∆t)]ŵ(t+∆t)

)
(2.296)

69

c⃝STFC Section 2.5

where ŵ = [0, ω̂]T and Q[q] is

Q =
1

2

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 (2.297)

The above equation is solved iteratively with

q(t+∆t) = q(t) + ∆t Q[q(t)]ŵ(t) (2.298)

as the first guess. Typically no more than 3 or 4 iterations are needed for convergence. At each
step the constraint

∥q(t+∆t)∥ = 1 (2.299)

is imposed.
The NVE LF algorithm is implemented in nveq 1 which allows for a system containing a

mixture of rigid bodies and atomistic species, provided the rigid bodies are not linked to other
species by constraint bonds.

The VV implementation is based on the NOSQUISH algorithm of Miller et al. [18]. In addition
to the quaternions it requires quaternion momenta defined by

p0
p1
p2
p3

 = 2

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

0
Îxxω̂x

Îyyω̂y

Îzzω̂z

 (2.300)

and quaternion torques defined by
Υ0

Υ1

Υ2

Υ3

 = 2

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

0
τ̂x
τ̂y
τ̂z

 (2.301)

(It should be noted that vectors p and Υ are 4-component vectors.) The quaternion momenta are
first updated a half-step using the formula

p(t+
∆t

2
)← p(t) +

∆t

2
Υ(t) (2.302)

Next a sequence of operations is applied to the quaternions and the quaternion momenta in the
order

eiL3(δt/2)eiL2(δt/2)eiL1(δt)eiL2(δt/2)eiL3(δt/2) (2.303)

which preserves the symplecticness of the operations (see reference [20]). Note that δt is some
submultiple of ∆t. (In DL POLY Classic the default is ∆t = 10δt.) The operators themselves are
of the following kind:

eiL(δt)q = cos(ζkδt)q + sin(ζkδt)Pkq

eiL(δt)p = cos(ζkδt)p+ sin(ζkδt)Pkp (2.304)

where Pk is a permutation operator with k = 0, . . . , 3 with the following properties

P0q = {q0, q1, q2, q3}
P1q = {−q1, q0, q3,−q2}
P2q = {−q2,−q3, q0, q1}
P3q = {−q3, q2,−q1, q0} (2.305)

70

c⃝STFC Section 2.5

and the angular velocity ζk is defined as

ζk =
1

4Ik
pTPkq. (2.306)

Equations (2.303) to (2.305) represent the heart of the NOSQUISH algorithm and are repeatedly
applied (10 times in DL POLY Classic). The final result is the quaternion updated to the full
timestep value i.e. q(t+∆t). These equations form part of the first stage of the VV algorithm.

In the second stage of the VV algorithm, new torques are used to update the quaternion
momenta to a full timestep.

p(t+∆t)← p(t+
∆t

2
) +

∆t

2
Υ(t+∆t) (2.307)

The NVE implementation of this algorithm is in the subroutine nveqvv 1 which calls the
nosquish subroutine to perform the rotation operation. The subroutine also calls rattle r and
rattle v to handle any rigid bonds which may be present.

Thermostats and Barostats

It is straightforward to couple the rigid body equations of motion to a thermostat and/or
barostat. The thermostat is coupled to both the translational and rotational degrees of freedom
and so both the translational and rotational velocities are propagated in an analogous manner to
the thermostated atomic velocities. The barostat, however, is coupled only to the translational
degrees of freedom and not to the rotation.DL POLY Classic supports both Hoover and Berendsen
thermostats and barostats for systems containing rigid bodies.

For LF integration the Hoover thermostat is implemented in nvtq h1, the Hoover isotropic
barostat (plus thermostat) in nptq h1 and the anisotropic barostat in nstq h1. The analogous
routines for the Berendsen algorithms are nvtq b1, nptq b1 and nstq b1. These subroutines
also call rdshake 1 to handle any rigid bonds which may be present.

For VV integration the Hoover thermostat is implemented in nvtqvv h1 (nvtqscl) , the
Hoover isotropic barostat (plus thermostat) in nptqvv h1 (nptqscl t, nptqscl p) and the
anisotropic barostat in nstqvv h1 (nstqscl t, nstqscl p). The analogous routines for the
Berendsen algorithms are nvtqvv b1, nptqvv b1 and nstqvv b1. (The subroutines in brackets
represent supporting subroutines.) These subroutines also call rattle r and rattle v to handle
any rigid bonds which may be present.

2.5.7.3 Linked Rigid Bodies

The above integration algorithms can be used for rigid bodies in systems containing “atomic”
species (whose equations of motion are integrated with the standard leapfrog algorithm). These
rigid bodies may even be linked to other species (including other rigid bodies) by extensible bonds.
However if a rigid body is linked to an atom or another rigid body by a bond constraint the above
algorithms are not adequate. The reason is that the constraint will introduce an additional force
and torque on the body that can only be found after the integration of the unconstrained unit.
DL POLY Classic has a suite of integration algorithms to cope with this situation in which both
the constraint conditions and the quaternion equations are solved similtaneously using an extension
of the SHAKE algorithm called “QSHAKE” [19]. It has been cast in both LF and VV forms. We
will describe here how it works for VV, the LF version is decribed in [19].

Firstly we assume a rigid body (A) is connected to another (B) at timestep tn = n∆t via bonds
between atoms at positions rnAp and rnBp given by

rnAp = Rn
A + dnAp

rnBp = Rn
B + dnBp (2.308)

71

c⃝STFC Section 2.5

where R represents the rigid body COM and d the displacement of the atom from the relevant
COM. The subscript p indicates that these are the atoms providing the links.

In the first stage of the VV QSHAKE algorithm, the rigid bodies are allowed to move unre-
stricted. Our task is then to find the the constraint force Gn

AB which would preserve the constraint
bondlength i.e. dnABp = dn+1

ABp. Assuming we know this force we can write:

Rn+1
A = R̃

n+1
A +

∆t2

2MA
Gn

AB (2.309)

in which the tilde x̃ indicates the corresponding variable computed in the absence of the constraint
force. (For brevity, in this and subsequent equations we leave out corresponding equations for body
B.)

We can also write the true torque at timestep tn (i.e. τn) as

τn = τ̃n + dnAp ×Gn
AB. (2.310)

It may be easily shown from this and equation (2.290) that

ω̇n
A = ˙̃ω

n
A +

(
In
)−1 (

dnAp ×Gn
AB

)
(2.311)

from which it follows that

dn+1
Ap = d̃

n+1
Ap +

∆t2

2
gnABU

n
A × dnAp (2.312)

where we have defined

Un
A =

(
In
A

)−1 (
dnAp × dnABp

)
(2.313)

and we have used the identity
Gn

AB = gnABd
n
ABp

where gnAB is a scalar quantity. Now, the true position (at timestep tn+1) of the link atom on rigid
body A is

rn+1
Ap = Rn+1

A + dn+1
Ap (2.314)

and inserting (2.309) and (2.312) leads to

rn+1
Ap = R̃

n+1
A + d̃

n+1
Ap + gnAB

∆t2

2
ΘA (2.315)

where

ΘA =

(
dnABp

MA
+ Un

A × dnAp

)
. (2.316)

Since dn+1
ABp = rn+1

Ap − r
n+1
Bp we can easily obtain

dn+1
ABp = d̃

n+1
ABp + gnAB

∆t2

2
(ΘA −ΘB) (2.317)

Squaring both sides and neglecting terms of order higher than O(∆t2) gives after rearrangement:

gnAB ≈
(dn+1

ABp)
2 − (d̃n+1

ABp)
2

∆t2d̃
n+1
ABp · (ΘA −ΘB)

(2.318)

From which the constraint force may be calculated. Iteration is necessary as in SHAKE.

72

c⃝STFC Section 2.5

In the second stage of QSHAKE we need to calculate another constaint force Hn+1
AB to preserve

the orthogonality of the constraint bond vector and the relative velocity of the two atoms in
the bond. Once again the contraint force implies corrections to the translational and rotational
equations of motion, which, following the methods used above, we write directly as:

V n+1
A = Ṽ

n+1
A +

∆t

2MA
Hn+1

AB

ωn+1
A = ω̃n

A +
∆t

2
hn+1
AB Un+1

A (2.319)

where hn+1
AB is a scalar related to the constraint force via

Hn+1
AB = hn+1

AB dn+1
ABp

Now, the velocity of the linked atom on molecule A is:

vn+1
Ap = V n+1

A + ωn+1
A × dn+1

Ap (2.320)

which on substitution of the above equations gives:

vn+1
Ap = ṽn+1

Ap +
∆t

2
hn+1
AB Ωn+1

A (2.321)

where

Ωn+1
A =

(
dn+1
ABp

MA
+ Un+1

A

)
. (2.322)

The constraint condition requires that

dn+1
ABp · (v

n+1
Ap − v

n+1
Bp) = 0 (2.323)

and substitution of the equation for vn+1
Ap (and the equivalent for vn+1

Bp) leads directly to

hn+1
AB = −

2dn+1
ABp · (ṽ

n+1
Ap − ṽ

n+1
Bp)

∆tdn+1
ABp · (ΩA − ΩB)

(2.324)

which provides the correction for second constraint. This again requires iteration.
The VV QSHAKE algorithm is implemented in DL POLY Classic in subroutine nveqvv 2 with

the QSHAKE constraint forces calculated in qrattle r and qrattle v. Again it is straightfor-
ward to couple these systems to a Hoover or Berendsen thermostat and/or barostat. The Hoover
and Berendsen thermostated versions are found in nvtqvv h2 and nvtqvv b2 respectively. The
isotropic constant pressure implementations are found in nptqvv h2 and nptqvv b2, while the
anisotropic constant pressure routines are found in nstqvv h2 and nstqvv b2. The Hoover
versions make use of the thermostat and barostat routines nvtqscl, nptqscl t, nptqscl p,
nstqscl t and nstqscl p according to the ensemble.

The LF QSHAKE algorithm is implemented in nveq 2 with the QSHAKE constraint forces
applied in qshake. This also has different ensemble versions: Hoover or Berendsen thermostat
and/or barostat. The Hoover and Berendsen thermostated versions are found in nvtq h2 and
nvtq b2 respectively. The isotropic constant pressure implementations are found in nptq h2 and
nptq b2, while the anisotropic constant pressure routines are found in nstq h2 and nstq b2.

An outline of the parallel version of QSHAKE is given in section 2.6.9.

73

c⃝STFC Section 2.6

2.5.8 The DL POLY Classic Multiple Timestep Algorithm

For simulations employing a large spherical cutoff rcut radius in the calculation of the interactions
DL POLY Classic offers the possibility of using a multiple timestep algorithm to improve the effi-
ciency. The method is based on that described by Streett et al [56, 57] with extension to Coulombic
systems by Forester et al [58].

In the multiple timestep algorithm there are two cutoffs for the pair interactions: a relatively
large cutoff (rcut) which is used to define the standard Verlet neighbour list; and a smaller cutoff
rprim which is used to define a primary list within the larger cutoff sphere (see figure). Forces
derived from atoms in the primary list are generally much larger than those derived from remaining
(so-called secondary) atoms in the neighbour list. Good energy conservation is therefore possible
if the forces derived from the primary atoms are calculated every timstep, while those from the
secondary atoms are calculated much less frequently, and are merely extrapolated over the interval.
DL POLY Classic handles this procedure as follows.

DL POLY Classic updates the Verlet neighbour list at irregular intervals, determined by the
movement of atoms in the neighbour list (see section 2.1). The interval between updates is usually
of the order of ∼20 timesteps. Partitioning the Verlet list into primary and secondary atoms
always occurs when the Verlet list is updated, and thereafter at intervals of multt timesteps (i.e.
the multi-step interval specified by the user - see section 4.1.1). Immediately after the partitioning,
the force contributions from both the primary and secondary atoms are calculated. The forces are
again calculated in total in the subsequent timestep. Thereafter, for multt-2 timesteps, the forces
derived from the primary atoms are calculated explicitly, while those derived from the secondary
atoms are calculated by linear extrapolation of the exact forces obtained in the first two timesteps
of the multi-step interval. It is readily apparent how this scheme can lead to a significant saving in
execution time.

Extension of this basic idea to simulations using the Ewald sum requires the following:

1. the reciprocal space terms are calculated only for the first two timesteps of the multi-step,

2. the contribution to the reciprocal space terms arising from primary interactions are imme-
diately subtracted, leaving only the long-range components. (This is done in real space, by
subtracting erf terms.);

3. the real space Coulombic forces arising from the secondary atoms are calculated in the first
two timesteps of the multi-step using the normal Ewald expressions (i.e. the erfc terms).

4. the Coulombic forces arising from primary atoms are calculated at every timestep in real
space assuming the full Coulombic force;

In this way the Coulombic forces can be handled by the same multiple timestep scheme as the van
der Waals forces. The algorithm is described in detail in [58].

Note that the accuracy of the algorithm is a function of the multi-step interval multt, and
decreases as multt increases. Also, the algorithm is not time reversible and is therefore susceptible
to energy drift. Its use with a thermostat is therefore advised.

2.6 DL POLY Parallelisation

DL POLY Classic is a distributed parallel molecular dynamics package based on the Replicated
Data parallelisation strategy [59, 60]. In this section we briefly outline the basic methodology.
Users wishing to add new features DL POLY Classic will need to be familiar with the underlying
techniques as they are described (in greater detail) in references [47, 60]).

74

c⃝STFC Section 2.6

r
prim

r
cut

Figure 2.8: The multiple timestep algorithm

The atoms surrounding the central atom (open circle) are classified as primary if they occur within
a radius rprim and secondary if outside this radius but within rcut. Interactions arising from primary
atoms are evaluated every timestep. Interactions from secondary atoms are calculated exactly for
the first two steps of a multi-step and by extrapolation afterwards.

2.6.1 The Replicated Data Strategy

The Replicated Data (RD) strategy [59] is one of several ways to achieve parallelisation in MD. Its
name derives from the replication of the configuration data on each node of a parallel computer
(i.e. the arrays defining the atomic coordinates ri, velocities vi and forces f

i
, for all N atoms {i :

i = 1, . . . , N} in the simulated system, are reproduced on every processing node). In this strategy
most of the forces computation and integration of the equations of motion can be shared easily
and equally between nodes and to a large extent be processed independently on each node. The
method is relatively simple to program and is reasonably efficient. Moreover, it can be “collapsed”
to run on a single processor very easily. However the strategy can be expensive in memory and
have high communication overheads, but overall it has proven to be successful over a wide range
of applications. These issues are explored in more detail in [59, 60].

Systems containing complex molecules present several difficulties. They often contain ionic
species, which usually require Ewald summation methods [14, 61], and intra-molecular interactions
in addition to inter-molecular forces. These are handled easily in the RD strategy, though the
SHAKE algorithm [15] requires significant modification [47].

The RD strategy is applied to complex molecular systems as follows:

1. Using the known atomic coordinates ri, each node calculates a subset of the forces acting
between the atoms. These are usually comprised of:

(a) atom-atom pair forces (e.g. Lennard Jones, Coulombic etc.);

(b) non-rigid atom-atom bonds;

(c) valence angle forces;

(d) dihedral angle forces;

(e) improper dihedral angle forces.

75

c⃝STFC Section 2.6

2. The computed forces are accumulated in (incomplete) atomic force arrays f
i
independently

on each node;

3. The atomic force arrays are summed globally over all nodes;

4. The complete force arrays are used to update the atomic velocities and positions.

It is important to note that load balancing (i.e. equal and concurrent use of all processors) is an
essential requirement of the overall algorithm. In DL POLY Classic this is accomplished for the
pair forces with an adaptation of the Brode-Ahlrichs scheme [25].

2.6.2 Distributing the Intramolecular Bonded Terms

DL POLY Classic handles the intramolecular in which the atoms involved in any given bond term
are explicitly listed. Distribution of the forces calculations is accomplished by the following scheme:

1. Every atom in the simulated system is assigned a unique index number from 1 to N ;

2. Every intramolecular bonded term Utype in the system has a unique index number itype: from
1 to Ntype where type represents a bond, angle or dihedral.

3. A pointer array keytype(ntype, itype) carries the indices of the specific atoms involved in the
potential term labelled itype. The dimension ntype will be 2, 3 or 4, if the term represents a
bond, angle or dihedral.

4. The array keytype(ntype, itype) is used to identify the atoms in a bonded term and the ap-
propriate form of interaction and thus to calculate the energy and forces. Each processor is
assigned the independent task of evaluating a block of (Int(Ntotal/Nnodes)) interactions.

The same scheme works for all types of bonded interactions. The global summation of the
force arrays does not occur until all the force contributions, including nonbonded forces has been
completed.

2.6.3 Distributing the Nonbonded Terms

In DL POLY Classic the nonbonded interactions are handled with a Verlet neighbour list [14] which
is reconstructed at intervals during the simulation. This list records the indices of all ‘secondary’
atoms within a certain radius of each ‘primary’ atom; the radius being the cut-off radius (rcut)
normally applied to the nonbonded potential function, plus an additional increment (∆rcut). The
larger radius (rcut+∆rcut) permits the same list to be used for several timesteps without requiring
an update. The frequency at which the list must be updated clearly depends on the thickness of
the region ∆rcut. In RD, the neighbour list is constructed simultaneously on each node and in such
a way as to share the total burden of the work equally between nodes. Each node is responsible
for a unique set of nonbonded interactions and the neighbour list is therefore different on each
node. DL POLY Classic uses a method based on the Brode-Ahlrichs scheme [25] (see figure 2.9)
to construct the neighbour list.

Additional modifications are necessary to handle the excluded atoms [60]. A distributed excluded
atoms list is constructed by DL POLY Classic at the start of the simulation. The list is constructed
so that the excluded atoms are referenced in the same order as they would appear in the Verlet
neighbour list if the bonded interactions were ignored, allowing for the distributed structure of the
neighbour list.

76

c⃝STFC Section 2.6

Brode Ahlrichs Algorithm

1,2 1,3 1,4 1,5 1,6 1,7

2,3 2,4 2,5 2,6 2,7 2,8

3,4 3,5 3,6 3,7 3,8 3,9

4,5 4,6 4,7 4,8 4,9 4,10

5,6 5,7 5,8 5,9 5,10 5,11

6,7 6,8 6,9 6,10 6,11 6,12

7,8 7,9 7,10 7,11 7,12

8,9 8,10 8,11 8,12 8,1

9,10 9,11 9,12 9,1 9,2

10,11 10,12 10,1 10,2 10,3

11,12 11,1 11,2 11,3 11,4

12,1 12,2 12,3 12,4 12,5

12 Atoms, 4 processors

Processor 0

Figure 2.9: The parallel implementation of the Brode-Ahlrichs algorithm.

This diagram illustrates the reordering of the upper triangular matrix of n(n-1)/2 pair interactions
so that the rows of the matrix are of approximately equally length. Each entry in the table consists
of a primary atom index (constant within a row) and a “neighbouring” atom index. Rows are
assigned sequentially to nodes. In the diagram node 0 deals with rows 1, 5 and 9, node 1 to rows
2, 6, and 10 etc.

When a charge group scheme (as opposed to an atomistic scheme) is used for the non-bonded
terms, the group-group interactions are distributed using the Brode-Ahlrichs approach. This makes
the Verlet list considerably smaller, thus saving memory, but also results in a more “coarse grain”
parallelism. The consequence of which is that performance with a large number of processors will
degrade more quickly than with the atomistic scheme.

Once the neighbour list has been constructed, each node of the parallel computer may proceed
independently to calculate the pair force contributions to the atomic forces.

2.6.4 Modifications for the Ewald Sum

For systems with periodic boundary conditions DL POLY Classic employs the Ewald Sum to cal-
culate the Coulombic interactions (see section 2.4.6).

Calculation of the real space component in DL POLY Classic employs the algorithm for the
calculation of the nonbonded interactions outlined above. The reciprocal space component is cal-
culated using the schemes described in [61], in which the calculation can be parallelised by distri-

77

c⃝STFC Section 2.6

bution of either k vectors or atomic sites. Distribution over atomic sites requires the use of a global
summation of the qi exp(−ik · rj) terms, but is more efficient in memory usage. Both strategies are
computationally straightforward. Subroutine ewald1 distributes over atomic sites and is often the
more efficient of the two approaches. Subroutine ewald1a distributes over the k vectors and may
be more efficient on machines with large communication latencies.

Other routines required to calculate the ewald sum include ewald2, ewald3 and ewald4.
The first of these calculates the real space contribution, the second the self interaction corrections,
and the third is required for the multiple timestep option.

2.6.5 Modifications for SPME

The SPME method requires relatively little modification for parallel computing. The real space
terms are calculated exactly as they are for the normal Ewald sum, as described above. The
reciprocal space sum requires a 3D Fast Fourier Transform (FFT), which in principle should be
distributed over the processors, but in DL POLY Classic the decision was made to implement a
complete 3D FFT on every processor. This is expensive in memory, and potentially expensive in
computer time. However a multi-processor FFT requires communication between processors and
this has significant impact on the famed efficiency of the FFT. It transpires that a single processor
FFT is so efficient that the adopted strategy is still effective. The charge array that is central to
the SPME method (see section 2.4.7) is however built in a distributed manner and then globally
summed prior to the FFT operation.

2.6.6 Three and Four Body Forces

DL POLY Classic can calculate three/four body interactions of the valence angle type [62]. These
are not dealt with in the same way as the normal nonbonded interactions. They are generally
very short ranged and are most effectively calculated using a link-cell scheme [26]. No reference is
made to the Verlet neighbour list nor the excluded atoms list. It follows that atoms involved in
the same three/four-body term can interact via nonbonded (pair) forces and ionic forces also. The
calculation of the three/four-body terms is distributed over processors on the basis of the identity
of the central atom in the bond. A global summation is required to specify the atomic forces fully.

2.6.7 Metal Potentials

The simulation of metals by DL POLY Classic makes use of density dependent potentials of the
Sutton-Chen type [40]. The dependence on the atomic density presents no difficulty however, as this
class of potentials can be resolved into pair contributions. This permits the use of the distributed
Verlet neighbour list outlined above.

2.6.8 Summing the Atomic Forces

The final stage in the RD strategy, is the global summation of the atomic force arrays. This
must be done After all the contributions to the atomic forces have been calculated. To do this
DL POLY Classic employs a global summation algorithm [59], which is generally a system specific
utility.

Similarly, the total configuration energy and virial must be obtained as a global sum of the
contributing terms calculated on all nodes.

78

c⃝STFC Section 2.6

2.6.9 The SHAKE, RATTLE and Parallel QSHAKE Algorithms

The SHAKE and RATTLE algorithms are methods for constraining rigid bonds. Parallel adapta-
tions of both are couched in the Replicated Data strategy. The essentials of the methods are as
follows.

1. The bond constraints acting in the simulated system are shared equally between the processing
nodes.

2. Each node makes a list recording which atoms are bonded by constraints it is to process.
Entries are zero if the atom is not bonded.

3. A copy of the array is passed to each other node in turn. The receiving node compares the
incoming list with its own and keeps a record of the shared atoms and the nodes which share
them.

4. In the first stage of the SHAKE algorithm, the atoms are updated through the usual Verlet
algorithm, without regard to the bond constraints.

5. In the second (iterative) stage of SHAKE, each node calculates the incremental correction
vectors for the bonded atoms in its own list of bond constraints. It then sends specific
correction vectors to all neighbours that share the same atoms, using the information compiled
in step 3.

6. When all necessary correction vectors have been received and added the positions of the
constrained atoms are corrected.

7. Steps 5 and 6 are repeated until the bond constraints are converged.

8. After convergence the coordinate arrays on each node are passed to all the other nodes. The
coordinates of atoms that are not in the constraint list of a given node are taken from the
incoming arrays (an operation we term splicing).

9. Finally, the change in the atom positions is used to calculate the atomic velocities.

The above scheme is complete for a implementation based on the leapfrog integration algorithm.
However a velocity Verlet (VV) scheme requires additional steps.

1. Step 9 above does not apply for VV. The velocity is integrated under the normal VV scheme.

2. When the velocity is updated, iteration of the constraint force takes place. The incremental
changes to the velocity are communicated between nodes sharing constrained atoms as for
the bondlength constraints.

3. Iteration is repeated until the bond constraints are converged.

4. After convergence the velocity arrays on each node are passed to all the other nodes by
splicing.

This scheme contains a number of non-trivial operations, which are described in detail in [47].
However some general comments are worth making.

The compilation of the list of constrained atoms on each node, and the circulation of the
list (items 1 - 3 above) need only be done once in any given simulation. It also transpires that in
sharing bond contraints between nodes, there is an advantage to keeping as many of the constraints

79

c⃝STFC Section 2.6

pertaining to a particular molecule together on one node as is possible within the requirement for
load balancing. This reduces the data that need to be transferred between nodes during the
iteration cycle. It is also advantageous, if the molecules are small, to adjust the load balancing
between processors to prevent shared atoms. The loss of balance is compensated by the elimination
of communications during the SHAKE cycle. These techniques are exploited by DL POLY Classic.

The QSHAKE algorithm is an extension of the SHAKE algorithm for constraint bonds between
rigid bodies. The parallel strategy is very similar to that of SHAKE. The only significant difference
is that increments to the atomic forces, not the atomic positions, are passed between processors at
the end of each iteration.

80

Chapter 3

Construction and Execution

81

c⃝STFC Section 3.0

Scope of Chapter

This chapter describes how to compile a working version of DL POLY Classic and how to run it.

82

c⃝STFC Section 3.2

3.1 Constructing DL POLY Classic

3.1.1 Overview

The DL POLY Classic executable program is constructed as follows.

1. DL POLY Classic is supplied as a gzipped tar file. This must be unpacked to create the
DL POLY Classic directory (section 1.4).

2. In the build subdirectory you will find the required DL POLY Classic makefile (see section
3.2.1 and Appendix A, where a sample Makefile is listed). This must be copied into the
subdirectory containing the relevant source code. In most cases this will be the source sub-
directory.

3. The makefile is executed with the appropriate keywords (section 3.2.1) which selects for spe-
cific computers (including serail and parallel machines) and the appropriate communication
software.

4. The makefile produces the executable version of the code, which as a default will be named
DLPOLY.X and located in the execute subdirectory.

5. DL POLY also has a Java GUI. The files for this are stored in the subdirectory java. Com-
pilation of this is simple and requires running the javac compiler and the jar utility. Details
for these procedures are provided in the GUI manual [9].

6. To run the executable for the first time you require (as a minimum) the files CONTROL,
FIELD and CONFIG (and possibly TABLE or TABEAM if you have tabulated potentials).
These must be present in the directory from which the program is executed. (See section 4.1
for the description of the input files.)

7. Executing the program will most often produce the files OUTPUT, REVCON and REVIVE
(and optionally STATIS, HISTORY, RDFDAT and ZDNDAT) in the executing directory.
(See section 4.2 for the description of the output files.)

This simple procedure is enough to create a standard version to run most DL POLY Classic
applications. However it sometimes happens that additional modifications may be necessary.

On starting, DL POLY Classic scans the input data and makes an estimate of the sizes of the
arrays it requires to do the simulation. Sometimes the estimates are not good enough. The most
common occurrences of this are NPT and NST simulations, or simulations where the local density
on the MD cell may significantly exceed the mean density of the cell (systems with a vacuum gap
for example). Under these circumstances arrays initally allocated may be insufficent. In which case
DL POLY Classic may report a memory problem and request that you recompile the code with
hand-adjusted array dimensions. This topic is dealt with more fully in Appendix C.

3.2 Compiling and Running DL POLY Classic

3.2.1 Compiling the Source Code

When you have obtained DL POLY Classic from Daresbury Laboratory and unpacked it, your
next task will be to compile it. To aid compilation a set of makefiles has been provided in the
sub-directory build (see example in Appendix A of this document). The versions go by the names
of:

83

c⃝STFC Section 3.2

• MakePAR - to build a parallel MPI version on a linux platform;

• MakeSEQ - to build a sequential (one processor) linux version;

Select the one you need and copy it into the source directory. (In what follows we assume the
makefile in the source directory is called “Makefile”.) The Makefile will build an executable with
a wide range of functionality - sufficient for the test cases and for most users’ requirements. Note
the MakeSEQ version can be used on Windows machines if you are running the CygWin shell and
using the gfortran compiler. Multi processor versions can be compiled using the MakePAR makefile
if OpenMPI is available in CygWin.

Users will need to modify the Makefile if they are to add additional functionality to the code,
or if it requires adaptation for a non specified computer. Modifications may also be needed for the
Smoothed Particle Mesh Ewald method if a system specific 3D FFT routine is desired (see below:
“Modifying the makefile”).

Note the following system requirements for a successful build of DL POLY Classic.

1. A FORTRAN 90 compiler, such as gfortran or G95;

2. The Java SDK from Oracle (to compile the GUI, if required).

3. A linux operating system (or Windows with CygWin, if a PC version is required).

Run the Makefile you copied from the build sub-directory in the source sub-directory. It will
create the executable in the execute sub-directory. The compilation of the program is initiated by
typing the command:

make target

where target is the specification of the required machine or compiler (e.g. “gfortran”). For many
computer systems this is all that is required to compile a working version of DL POLY Classic. (To
determine which targets are already defined in the makefile, typing the command make without a
nominated target will produce a list of targets known to the makefile.)

The full specification of the make command is as follows

make <TARGET= . . . > < EX=. . . > < BINROOT=. . . >

where some (or all) of the keywords may be omitted. The keywords and their uses are described
below. Note that keywords may also be set in the linux environment (e.g. with the “setenv”
command in a C-shell). For PCs running Windows, the makefile assumes the user has installed the
Cygwin linux API available from

http : //sources.redhat.com/cygwin

The recommended FORTRAN 90 compiler is gfortran (which is available under CygWin),but G95
can also be used, see:

http : //ftp.g95.org/

. In principle any Fortran 90 compiler will do, but these are ones that have been used successfully
by the development team.

84

http://sources.redhat.com/cygwin
http://ftp.g95.org/

c⃝STFC Section 3.2

3.2.1.1 Keywords for the Makefile

1. TARGET

The TARGET keyword indicates which kind of computerm (or compiler) the code is to
be compiled for. This must be specifed. Valid targets can be listed by the makefile if the
command make is typed, without arguments. The list frequently changes as more targets
are added and redundant ones removed. Users are encouraged to extend the Makefile for
themselves, using existing targets as examples.

2. EX

The EX keyword specifies the executable name. The default name for the executable is
“DLPOLY.X”.

3. BINROOT

The BINROOT keyword specifies the directory in which the executable is to be stored. The
default setting is “../execute”.

Clearing up the directory after a compilation can be performed by typing

make clean

which removes all *.o and *.mod files from the source directory. (It is sometimes useful to do this
before a recompile, particularly if you suspect the code is not correctly incorporating changes you
have made to the source code.)

3.2.1.2 Modifying the Makefile

1. Changing the TARGET

If you do not intend to run DL POLY Classic on one of the specified machines, you must
add appropriate lines to the makefile to suit your circumstances. The safest way to do this
is to modify an existing TARGET option for your purposes. The makefile supplied with
DL POLY Classic contains examples for different serial and parallel (MPI) environments, so
you should find one close to your requirements. You must of course be familiar with the
appropriate invocation of the FORTRAN 90 compiler for your local machine and also any
alternatives to MPI your local machine may be running. If you wish to compile for MPI
systems remember to ensure the appropriate library directories are accessible to you. If you
require a serial version of the code, you must remove references to the MPI libraries from the
Makefile and add the file serial.f to your compilation - this will insert replacement (dummy)
routines for the MPI calls.

2. Enabling the Smoothed Particle Mesh Ewald

The standard compilation of DL POLY Classic will incorporate a basic 3D Fast Fourier Trans-
form (FFT) routine to enable the SPME functionality.

85

c⃝STFC Section 3.2

3. Problems with optimization?

Some subroutines may not compile correctly when using optimization on some compilers.
This is not necessarily the fault of the DL POLY Classic code, some compilers are just flakey.
This can be circumvented by compiling the offending subroutines separately with optimisation
flags turned off.

4. Adding new functionality

To include a new subroutine in the code simply add subroutine.o to the list of object names
in the makefile. The simplest way is to add names to the “OBJ SRC” list. However, for more
substantial modifications it is advisable to construct a proper F90 module containing several
related subroutines and add this to the “OBJ MOD” list.

3.2.1.3 A Note on Interpolation

In DL POLY Classic the short-range (Van der Waals) contributions to energy and force are eval-
uated by interpolation of tables constructed at the beginning of execution. DL POLY Classic
employs a 3-point interpolation scheme.

A guide to the minimum number of grid points (mxgrid) required for interpolation in r to give
good energy conservation in a simulation is:

mxgrid ≥ 100(rcut/rmin)

where rmin is the smallest position minimum of the non-bonded potentials in the system. The
parameter mxgrid is defined in the dl params.inc file, and must be set before compilation.

A utility program tabchk is provided in the DL POLY utility sub-directory to help users choose
a sufficiently accurate interpolation scheme (including array sizes) for their needs.

3.2.2 Running DL POLY Classic

To run the DL POLY Classic executable (DLPOLY.X), for most applications, you will initially
require three, possibly four, input data files, which you must create in the execute sub-directory,
(or whichever sub-directory you keep the executable program.) The first of these is the CONTROL
file (section 4.1.1), which indicates to DL POLY Classic what kind of simulation you want to run,
how much data you want to gather and for how long you want the job to run. The second file
you need is the CONFIG file (section 4.1.2). This contains the atom positions and, depending
on how the file was created (e.g. whether this is a configuration created from ‘scratch’ or the
end point of another run), the velocities also. The third file required is the FIELD file (section
4.1.3), which specifies the nature of the intermolecular interactions, the molecular topology and
the atomic properties, such as charge and mass. Sometimes you will also require a TABLE file
(section 4.1.5), which contains the potential and force arrays for functional forms not available
within DL POLY Classic (usually because they are too complex e.g. spline potentials). Sometimes
you will also require a TABEAM file (section 4.1.6), if your simulation includes embedded atom
potentials for metallic systems.

Examples of input files are found in the data sub-directory, which can be copied into the execute
subdirectory using the select macro found in the execute sub-directory.

A successful run of DL POLY Classic will generate several data files, which appear in the
execute sub-directory. The most obvious one is the file OUTPUT (section 4.2.2), which provides an
effective summary of the job run: the input information; starting configuration; instantaneous and
rolling-averaged thermodynamic data; final configurations; radial distribution functions (RDFs);

86

c⃝STFC Section 3.2

and job timing data. The OUTPUT file is human readable. Also present will be the restart files
REVIVE (section 4.2.5) and REVCON (section 4.2.3). REVIVE contains the accumulated data for
a number of thermodynamic quantities and RDFs, and is intended to be used as the input file for
a following run. It is not human readable. The REVCON file contains the restart configuration i.e.
the final positions, velocities and forces of the atoms when the run ended and is human readable.
The STATIS file (section 4.2.8) contains a catalogue of instantaneous values of thermodynamic and
other variables, in a form suitable for temporal or statistical analysis. In standard use DL POLY
may also create the files RDFDAT (section 4.2.6) or ZDNDAT (section 4.2.7), containing the RDF
and Z-density data respectively. They are both human readable files. Finally, the HISTORY file
(section 4.2.1) provides a time ordered sequence of configurations to facilitate further analysis of the
atomic motions. Depending on which version of the traject subroutine you compiled in the code,
this file may be either formatted (human readable) or unformatted. You may move these output
files back into the data sub-directory using the store macro found in the execute sub-directory.

Note that the special extensions of DL POLY Classic including: structural optimisation (Section
3.2.4); hyperdynamics (Chapter 6); solvation (Chapter 5); metadynamics (Chapter 7); and path
integral molecular dynamics (Chapter 8); all have associated families of input and output files.
These are described in the indicated locations of this manual.

3.2.3 Restarting DL POLY Classic

The best approach to running DL POLY Classic is to define from the outset precisely the simulation
you wish to perform and create the input files specific to this requirement. The program will then
perform the requested simulation, but may terminate prematurely through error, inadequate time
allocation or computer failure. Errors in input data are your responsibility, but DL POLY Classic
will usually give diagnostic messages to help you sort out the trouble. Running out of job time is
common and provided you have correctly specified the job time variables (using the close time
and job time directives - see section 4.1.1) in the CONTROL file, DL POLY Classic will stop in
a controlled manner, allowing you to restart the job as if it had not been interrupted.

To restart a simulation after normal termination you will again require the CONTROL file,
the FIELD (and TABLE) file, and a CONFIG file, which is the exact copy of the REVCON file
created by the previous job. You will also require a new file: REVOLD (section 4.1.4), which is an
exact copy of the previous REVIVE file. If you attempt to restart DL POLY Classic without this
additional file available, the job will fail. Note that DL POLY Classic will append new data to the
existing STATIS and HISTORY files if the run is restarted, other output files will be overwritten.

In the event of machine failure, you should be able to restart the job in the same way from
the surviving REVCON and REVIVE files, which are dumped at intervals to meet just such an
emergency. In this case check carefully that the input files are intact and use the HISTORY and
STATIS files with caution - there may be duplicated or missing records. The reprieve processing
capabilities of DL POLY Classic are not foolproof - the job may crash while these files are being
written for example, but they can help a great deal. You are advised to keep backup copies of
these files, noting the times they were written, to help you avoid going right back to the start of a
simulation.

You can also extend a simulation beyond its initial allocation of timesteps, provided you still
have the REVCON and REVIVE files. These should be copied to the CONFIG and REVOLD files
respectively and the directive timesteps adjusted in the CONTROL file to the new total number
of steps required for the simulation. For example if you wish to extend a 10000 step simulation
by a further 5000 steps use the directive timesteps 15000 in the CONTROL file and include the
restart directive.

Note that you can use the restart scale directive if you want to reset the temperature at the

87

c⃝STFC Section 3.2

restart, but note also that this also resets all internal accumulators (timestep included) to zero.
Alternatively you can use the restart noscale directive if you want to leave the atomic velocities
unchanged at restart, but wish to start a fresh simulation. This will also reset internal accumulators
and timestep number to zero. Both the restart scale and restart noscale options will therefore
ignore the REVOLD file.

3.2.4 Optimising the Starting Structure

The preparation of the initial structure of a system for a molecular dynamics simulation can be
difficult. It is quite likely that the structure created does not correspond to one typical of the
equilibrium state for the required state point, for the given force field employed. This can make
the simulation unstable in the initial stages and can even prevent it from proceeding.

For this reason DL POLY Classic has available a selection of structure relaxation methods.
Broadly speaking, these are energy minimisation algorithms, but their role in DL POLY Classic
is not to provide users with true structural optimisation procedures capable of finding the ground
state structure They are simply intended to help users improve the quality of the starting structure
prior to a dynamical simulation.

The available algorithms are:

1. “Zero” temperature molecular dynamics . This is equivalent to a dynamical simulation at
low temperature. At each time step the molecules move in the direction of the computed
forces (and torques), but are not allowed to acquire a velocity larger than that corresponding
to a temperature of 1 Kelvin. The subroutine that performs this procedure is zero kelvin,
which is found in the file optimiser module.f.

2. Conjugate Gradients (CG) minimisation . This is nominally a simple minimisation of the
system configuration energy using the conjugate gradients method [63]. The algorithm coded
into DL POLY Classic allows is an adaptation that allows for rotation and translation of rigid
bodies. Rigid (contraint) bonds however are treated as stiff harmonic springs - a strategy
which we find does allow the bonds to converge within the accuracy required by SHAKE.
The subroutine that performs this procedure is strucopt, which is found in the file opti-
miser module.f.

3. “Programmed” energy minimisation, involving both molecular dynamics and conjugate gra-
dients . This method combines conjugate gradient minimisation with molecular dynamics.
Minimisation is followed by user-defined intervals of (usually low temperature) dynamics,
in a cycle of minimisation - dynamics - minimisation etc, which is intended to help the
structure relax from overstrained conditions. When using the programmed minimisation
DL POLY Classic writes (and rewrites) the file CFGMIN 4.2.4, which represents the low-
est energy structure found during the programmed minimisation. CFGMIN is written in
CONFIG file format (see section 4.1.2) and can be used in place of the original CONFIG file.

It should be noted that none of these algorithms permit the simulation cell to change shape.
It is only the atomic structure that is relaxed. After which it is assumed that normal molecular
dynamics will commence from the final structure.

Additional Comments on the Minimisation Procedures

1. The zero temperature dynamics is really dynamics conducted at 1 Kelvin. However the
dynamics has been modified so that the velocities of the atoms are always directed along the
force vectors. Thus the dynamics follows the steepest descent to the (local) minimum. From
any given configuration, it will always descend to the same minimum.

88

c⃝STFC Section 3.2

2. The conjugate gradient procedure has been adapted to take account of the possibilites of
constraint bonds and rigid bodies being present in the system. If neither of these is present,
the conventional unadapted procedure is followed.

(a) In the case of rigid bodies, atomic forces are resolved into molecular forces and torques.
The torques are subsequently transformed into an equivalent set of atomic forces which
are perpendicular both to the instantaneous axis of rotation (defined by the torque
vector) and to the cylindrical radial displacement vector of the atom from the axis.
These modified forces are then used in place of the original atomic forces in the conjugate
gradient scheme. The atomic displacement induced in the conjugate gradient algorithm
is corrected to maintain the magnitude of the radial position vector, as required for
circular motion.

(b) With regard to constraint bonds, these are replaced by stiff harmonic bonds to permit
minimisation. This is not normally recommended as a means to incorporate constraints
in minimisation procedures as it leads to ill conditioning. However, if the constraints in
the original structure are satisfied, we find that provided only small atomic displacements
are allowed during relaxation it is possible to converge to a minimum energy structure.
Furthermore, provided the harmonic springs are stiff enough, it is possible afterwards to
satisfy the constraints exactly by further optimising the structure using the stiff springs
alone, without having a significant affect on the overall system energy.

(c) Systems with independent constraint bonds and rigid bodies and systems with rigid
bodies linked by constraints may also be minimised by these methods.

3. Of the three minimisation methods available in DL POLY Classic, only the programmed
minimiser is capable of finding more than one minimum without the user intervening.

4. Finally, we emphasise once again that the purpose of the minimisers in DL POLY Classic is
to help improve the quality of the starting structure and we believe they are adequate for that
purpose. We do not recommend them as general molecular structure optimisers. They may
however prove useful for relaxing crystal structures to 0 Kelvin for the purpose of identifying
a true crystal structure.

3.2.5 Choosing Ewald Sum Variables

3.2.5.1 Ewald sum and SPME

This section outlines how to optimise the accuracy of the Ewald sum parameters for a given simu-
lation. In what follows the directive spme may be used anywhere in place of the directive ewald
if the user wishes to use the Smoothed Particle Mesh Ewald method.

As a guide to beginners DL POLY Classic will calculate reasonable parameters if the ewald
precision directive is used in the CONTROL file (see section 4.1.1). A relative error (see below)
of 10−6 is normally sufficient so the directive

ewald precision 1d-6

will cause DL POLY Classic to evaluate its best guess at the Ewald parameters α, kmax1, kmax2
and kmax3. (The user should note that this represents an estimate, and there are sometimes
circumstances where the estimate can be improved upon. This is especially the case when the
system contains a strong directional anisotropy, such as a surface.) These four parameters may
also be set explicitly by the ewald sum directive in the CONTROL file. For example the directive

89

c⃝STFC Section 3.2

ewald sum 0.35 6 6 8

would set α = 0.35 Å−1, kmax1 = 6, kmax2 = 6 and kmax3 = 8. The quickest check on the
accuracy of the Ewald sum is to compare the Coulombic energy (U) and the coulombic virial (W)
in a short simulation. Adherence to the relationship U = −W shows the extent to which the Ewald
sum is correctly converged. These variables can be found under the columns headed eng cou and
vir cou in the OUTPUT file (see section 4.2.2).

The remainder of this section explains the meanings of these parameters and how they can
be chosen. The Ewald sum can only be used in a three dimensional periodic system. There are
three variables that control the accuracy: α, the Ewald convergence parameter; rcut the real space
forces cutoff; and the kmax1,2,3 integers 1 that effectively define the range of the reciprocal space
sum (one integer for each of the three axis directions). These variables are not independent, and
it is usual to regard one of them as pre-determined and adjust the other two accordingly. In this
treatment we assume that rcut (defined by the cutoff directive in the CONTROL file) is fixed for
the given system.

The Ewald sum splits the (electrostatic) sum for the infinite, periodic, system into a damped
real space sum and a reciprocal space sum. The rate of convergence of both sums is governed by
α. Evaluation of the real space sum is truncated at r = rcut so it is important that α be chosen so
that contributions to the real space sum are negligible for terms with r > rcut. The relative error
(ϵ) in the real space sum truncated at rcut is given approximately by

ϵ ≈ erfc(αrcut)/rcut ≈ exp[−(α.rcut)2]/rcut (3.1)

The recommended value for α is 3.2/rcut or greater (too large a value will make the reciprocal
space sum very slowly convergent). This gives a relative error in the energy of no greater than
ϵ = 4× 10−5 in the real space sum. When using the directive ewald precision DL POLY Classic
makes use of a more sophisticated approximation:

erfc(x) ≈ 0.56 exp(−x2)/x (3.2)

to solve recursively for α, using equation 3.1 to give the first guess.
The relative error in the reciprocal space term is approximately

ϵ ≈ exp(−k2max/4α
2)/k2max (3.3)

where

kmax =
2π

L
kmax (3.4)

is the largest k-vector considered in reciprocal space, L is the width of the cell in the specified
direction and kmax is an integer.

For a relative error of 4× 10−5 this means using kmax ≈ 6.2α. kmax is then

kmax > 3.2 L/rcut (3.5)

In a cubic system, rcut = L/2 implies kmax = 7. In practice the above equation slightly over
estimates the value of kmax required, so optimal values need to be found experimentally. In the
above example kmax = 5 or 6 would be adequate.

If your simulation cell is a truncated octahedron or a rhombic dodecahedron then the estimates
for the kmax need to be multiplied by 21/3. This arises because twice the normal number of k-
vectors are required (half of which are redundant by symmetry) for these boundary contributions
[47].

1Important note: For the SPME method the values of kmax1,2,3 should be double those obtained in this
prescription, since they specify the sides of a cube, not a radius of convergence.

90

c⃝STFC Section 3.2

If you wish to set the Ewald parameters manually (via the ewald sum or spme sum directives)
the recommended approach is as follows. Preselect the value of rcut, choose a working a value of
α of about 3.2/rcut and a large value for the kmax (say 10 10 10 or more). Then do a series of ten
or so single step simulations with your initial configuration and with α ranging over the value you
have chosen plus and minus 20%. Plot the Coulombic energy (and −W) versus α. If the Ewald
sum is correctly converged you will see a plateau in the plot. Divergence from the plateau at small
α is due to non-convergence in the real space sum. Divergence from the plateau at large α is due
to non-convergence of the reciprocal space sum. Redo the series of calculations using smaller kmax
values. The optimum values for kmax are the smallest values that reproduce the correct Coulombic
energy (the plateau value) and virial at the value of α to be used in the simulation.

Note that one needs to specify the three integers (kmax1, kmax2, kmax3) referring to the three
spatial directions, to ensure the reciprocal space sum is equally accurate in all directions. The
values of kmax1, kmax2 and kmax3 must be commensurate with the cell geometry to ensure the
same minimum wavelength is used in all directions. For a cubic cell set kmax1 = kmax2 = kmax3.
However, for example, in a cell with dimensions 2A = 2B = C (ie. a tetragonal cell, longer in the
c direction than the a and b directions) use 2kmax1 = 2kmax2 = (kmax3).

If the values for the kmax used are too small, the Ewald sum will produce spurious results.
If values that are too large are used, the results will be correct but the calculation will consume
unnecessary amounts of cpu time. The amount of cpu time increases with kmax1× kmax2× kmax3.

3.2.5.2 Hautman Klein Ewald Optimisation

Setting the HKE parameters can also be achieved rather simply, by the use of a hke precision
directive in the CONTROL file e.g.

hke precision 1d-6 1 1

which specifies the required accuracy of the HKE convergence functions, plus two additional in-
tegers; the first specifying the order of the HKE expansion (nhko) and the second the maximum
lattice parameter (nlatt). DL POLY Classic will permit values of nhko from 1-3, meaning the
HKE Taylor series expansion may range from zeroth to third order. Also nlatt may range from
1-2, meaning that (1) the nearest neighbour, and (2) and next nearest neighbour, cells are explicitly
treated in the real space part of the Ewald sum. Increasing either of these parameters will increase
the accuracy, but also substantially increase the cpu time of a simulation. The recommended value
for both these parameters is 1 and if both these integers are left out, the default values will be
adopted.

As with the standard Ewald and SPME methods, the user may set alternative control param-
eters with the CONTROL file hke sum directive e.g.

hke sum 0.05 6 6 1 1

which would set α = 0.05 Å−1, kmax1 = 6, kmax2 = 6. Once again one may check the accuracy by
comparing the Coulombic energy with the virial, as described above. The last two integers specify,
once again, the values of nhko and nlatt respectively. (Note it is possible to set either of these to
zero in this case.)

Estimating the parameters required for a given simulation follows a similar procedure as for
the standard Ewald method (above), but is complicated by the occurrence of higher orders of the
convergence functions. Firstly a suitable value for α may be obtained when nlatt=0 from the
rule: α = β/rcut, where rcut is the largest real space cutoff compatible with a single MD cell and
β=(3.46,4.37,5.01,5.55) when nhko=(0,1,2,3) respectively. Thus in the usual case where nhko=1,

91

c⃝STFC Section 3.3

β=4.37. When nlatt̸=0, this β value is multiplied by a factor 1/(2 ∗ nlatt+ 1).
The estimation of kmax1,2 is the same as that for the standard Ewald method above. Note

that if any of these parameters prove to be insufficiently accurate, DL POLY Classic will issue an
error in the OUTPUT file, and indicate whether it is the real or reciprocal space sums that is
questionable.

3.3 DL POLY Classic Error Processing

3.3.1 The DL POLY Classic Internal Error Facility

DL POLY Classic contains a number of in-built error checks scattered throughout the package
which detect a wide range of possible errors. In all cases, when an error is detected the subroutine
error is called, resulting in an appropriate message and termination of the program execution
(either immediately, or after additional processing.).

Users intending to insert new error checks should ensure that all error checks are performed
concurrently on all nodes, and that in circumstances where a different result may obtain on different
nodes, a call to the global status routine gstate is made to set the appropriate global error flag on
all nodes. Only after this is done, a call to subroutine error may be made. An example of such
a procedure might be:

logical safe

safe=(test condition)

call gstate(safe)

if(.not.safe) call error(node id,message number)

In this example it is assumed that the logical operation test condition will result in the answer
.true. if it is safe for the program to proceed, and .false. otherwise. The call to error requires
the user to state the identity of the calling node (node id), so that only the nominated node in
error (i.e. node 0) will print the error message. The variable message number is an integer used
to identify the appropriate message to be printed.

In all cases, if error is called with a non-negativemessage number, the program run terminates.
If the message number is negative, execution continues, but even in this case DL POLY Classic will
terminate the job at a more appropriate place. This feature is used in processing the CONTROL
and FIELD file directives. A possible modification users may consider is to dump additional data
before the call to error is made.

A full list of the DL POLY Classic error messages and the appropriate user action can be found
in Appendix C of this document.

92

Chapter 4

Data Files

93

c⃝STFC Section 4.0

Scope of Chapter

This chapter describes the standard input and output files for DL POLY Classic, examples of which
are to be found in the data sub-directory.

94

c⃝STFC Section 4.1

4.1 The INPUT files

Figure 4.1: DL POLY Classic standard input and output files
.

Input files appear on the left and output files on the right. Files marked with an asterisk are non-
mandatory. File CFGMIN (not shown) appears as an output file if the user selects the programmed
minimisation option (see 3.2.4).

In normal use DL POLY Classic requires six input files named CONTROL, CONFIG, FIELD,
TABLE, TABEAM and REVOLD. The first three files are mandatory, while files TABLE and
TABEAM (TAB/EAM in the figure) are used only to input certain kinds of pair potential, and are
not always required. REVOLD is required only if the job represents a continuation of a previous
job. In the following sections we describe the form and content of these files.

Note: In addition to the files described in this chapter, users of the hyperdynamics features of
DL POLY Classic should see Chapter 6, where additional files specific to that purpose are described.

Users are strongly advised to study the example input files appearing in the data
sub-directory to see how different files are constructed.

4.1.1 The CONTROL File

The CONTROL file is read by the subroutine simdef and defines the control variables for running
a DL POLY Classic job. It makes extensive use of directives and keywords. Directives are

95

c⃝STFC Section 4.1

character strings that appear as the first entry on a data record (or line) and which invoke a
particular operation or provide numerical parameters. Also associated with each directive may
be one or more keywords, which may qualify a particular directive by, for example, adding extra
options. Directives have the following general form:

keyword [options] {data}

The keyword and options are text fields, while the data options are numbers (integers or reals).
Directives can appear in any order in the CONTROL file, except for the finish directive which

marks the end of the file. Some of the directives are mandatory (for example the timestep directive
that defines the timestep), others are optional.

This way of constructing the file is very convenient, but it has inherent dangers. It is, for
example, quite easy to specify the same directive more than once, or specify contradictory directives,
or invoke algorithms that do not work together. By and large DL POLY Classic tries to sort out
these difficulties and print helpful error messages, but it does not claim to be foolproof. Fortunately
in most cases the CONTROL file will be small and easy to check visually. It is important to think
carefully about a simulation beforehand and ensure that DL POLY Classic is being asked to do
something that is physically reasonable. It should also be remembered that the present capabilites
the package may not allow the simulation required and it may be necessary for you yourself to add
new features.

An example CONTROL file appears below. The directives and keywords appearing are de-
scribed in the following section.

DL_POLY TEST CASE 1: K Na disilicate glass

temperature 1000.0

pressure 0.0000

ensemble nve

integrator leapfrog

steps 500

equilibration 200

multiple 5

scale 10

print 10

stack 100

stats 10

rdf 10

timestep 0.0010

primary 9.0000

cutoff 12.030

delr 1.0000

rvdw 7.6000

ewald precision 1.0E-5

print rdf

job time 1200.0

close time 100.00

96

c⃝STFC Section 4.1

finish

4.1.1.1 The CONTROL file format

The file is free-formatted, integers, reals and additional keywords are entered following the keyword
on each record. Real and integer numbers must be separated by a non-numeric character (preferably
a space or comma) to be correctly interpreted. No logical variables appear in the control file.
Comment records (beginning with a #) and blank lines may be added to aid legibility (see example
above). The CONTROL file is not case sensitive.

• The first record in the CONTROL file is a header 80 characters long, to aid identification of
the file.

• The last record is a finish directive, which marks the end of the input data.

Between the header and the finish directive, a wide choice of control directives may be inserted.
These are described below.

4.1.1.2 The CONTROL File Directives

Note: Users of the special features of DL POLY Classic such as hyperdynamics (Chapter 6) (in-
cluding nudged elastic band calculations), or solvation features (Chapter 5) (including energy de-
composition, free energy and solvation induced spectral shifts), metadynamics (Chapter 7), or
path integral molecular dynamics (PIMD) (Chapter 8) should consult the relevant chapters of this
manual, where additional CONTROL directives specific to these functions are described.

The directives required for standard use of DL POLYare as follows.

directive: meaning:

all pairs Use all pairs for calculating electrostatic interactions
with multiple time step method

cap f Cap forces during equilibration period
f is maximum cap in units of kT/Å
(default f=1000)

close time f Set job closure time to f seconds
collect Include equilibration data in overall statistics
coul Calculate coulombic forces
cut f Set required forces cutoff to f (Å)
densvar f Percentage density variation for arrays
distan Calculate coulombic forces using distance dependent dielectric
delr f Set Verlet neighbour list shell width to f (Å)
ensemble nve Select NVE ensemble (default)
ensemble nvt ber f

Select NVT ensemble with Berendsen thermostat
with relaxation constant f (ps)

ensemble nvt evans
Select NVT ensemble with Evans thermostat

ensemble nvt hoover f
Select NVT ensemble with Hoover-Nose thermostat
with relaxation constant f (ps)

97

c⃝STFC Section 4.1

ensemble npt ber f1 f2
Select Berendsen NPT ensemble with f1, f2
as the thermostat and barostat relaxation times (ps)

ensemble npt hoover f1 f2
Select Hoover NPT ensemble with f1, f2
as the thermostat and barostat relaxation times (ps)

ensemble nst ber f1 f2
Select Berendsen NσT ensemble, with f1, f2
as the thermostat and barostat relaxation times (ps)

ensemble nst hoover f1 f2
Select Hoover NσT ensemble with f1, f2
as the thermostat and barostat relaxation times (ps)

ensemble pmf Select (NVE) potential of mean force ensemble
eps f Set relative dielectric constant to f (default 1.0)
equil n Equilibrate simulation for first n timesteps
ewald precision f Select Ewald sum for electrostatics, with

automatic parameter optimisation (0 < f < 1.E − 4)
ewald sum α k1 k2 k3

Select Ewald sum for electrostatics, with:
α = Ewald convergence parameter (Å−1)
k1 = maximum k-vector index in x-direction
k2 = maximum k-vector index in y-direction
k3 = maximum k-vector index in z-direction

finish Close the CONTROL file (last data record)
hke precision f i j Select HK-Ewald sum for electrostatics, with

automatic parameter optimisation (0 < f < .5)
i = required order of HKE expansion (recommend 1)
j = required lattice sum order (recommend 1)

hke sum α k1 k2 i j
Select HK-Ewald sum for electrostatics, with:
α = Ewald convergence parameter (Å−1)
k1 = maximum g-vector index in x-direction
k2 = maximum g-vector index in y-direction
nhko = required order of HKE expansion (recommend 1)
nlatt = required lattice sum order (recommend 1)

integrator type Select type of integration algorithm:
leapfrog : leapfrog integration algorithm (default)
velocity : velocity Verlet integration algorithm.
The default is leapfrog if integrator is not specified.

impact i n E ux uy uz
Select impact dynamics with:
i = identity of impacted atom
n = time step when impact occurs
E = the recoil energy of the impacted atom (in KeV)
ux = X-component of normalised recoil direction vector
uy = Y-component of normalised recoil direction vector
uz = Z-component of normalised recoil direction vector

job time f Set job time to f seconds
minim energy n f Programmed minimisation based on energy, force or position, with:

98

c⃝STFC Section 4.1

minim force n f n = number of time steps between minimisations, and
minim position n f f = permitted variation (tolerance) (DL POLY units).
mult n Set multiple timestep (multi-step)interval (activated when n>2)
no elec Ignore all coulombic interactions
no fic Activate ’flying ice cube’ prevention for Berendsen NVT, NPT etc.
no link Do not use link cells for vdw or metal forces
no vdw Ignore all short range (non-bonded) interactions
optim energy f Relax structure based on energy, force or position, with:
optim force f f = permitted variation (tolerance) (DL POLY units).
optim position f
pres f Set required system pressure to f k-atm

(target pressure for constant pressure ensembles)
prim f Set primary cutoff to f (Å)

(for multiple timestep algorithm only)
print n Print system data every n timesteps
print rdf Print radial distribution functions
put shells on cores Superimpose electrostatic shells and cores at start
quaternion f Set quaternion tolerance to f (default 10−8)
rdf n w Calculate radial distribution functions with:

n the time step interval between configurations
w the RDF bin width (Å). (Note: range = rcut).

reaction Select reaction field electrostatics
reaction precision f Select damped reaction field electrostatics

with automatic parameter optimisation (0 < f < 1.E − 4)
reaction damped f Select damped reaction field electrostatics

with user chosen damping parameter f (Å−1)
regauss n Reset velocities at timestep interval n

using Gaussian distribution.
restart Restart job from end point of previous run

(i.e. continue current simulation)
restart noscale Restart job from previous run with no temperature scaling

(i.e. begin a new simulation from older run)
restart scale Restart job from previous run with temperature scaling

(i.e. begin a new simulation from older run)
rlxtol f Reset force tolerance for shell relaxation

to f = (DL POLY units), (1.0 default).
rvdw f Set required vdw forces cutoff to f (Å)
scale n Rescale atomic velocities every n steps (during equilibration)

using ad hoc rescaling.
shake f Set shake tolerance to f (default 10−8)
shift Calculate electrostatic forces using shifted coulombic potential
shift precision f Select damped shifted coulombic force electrostatics

with automatic parameter optimisation (0 < f < 1.E − 4)
shift damped f Select damped shifted coulombic force electrostatics

with user chosen damping parameter f (Å−1)
spme precision f Select SPME for electrostatics, with

automatic parameter optimisation (0 < f < .5)
spme sum α k1 k2 k3

Select SPME for electrostatics, with:

99

c⃝STFC Section 4.1

α = Ewald convergence parameter (Å−1)
k1 = maximum k-vector index in x-direction
k2 = maximum k-vector index in y-direction
k3 = maximum k-vector index in z-direction

stack n Set rolling average stack to n timesteps
stats n Accumulate statistics data every n timesteps
steps n Run simulation for n timesteps
temp f Set required simulation temperature to f K
traj i j k Write HISTORY file with controls:

i = start timestep for dumping configurations
j = timestep interval between configurations
k = data level (i.e. variable keytrj see table 4.3)

timestep f Set timestep to f ps
zden n w z Calculate the z-density profile with:

n the time step interval between configurations
w the z-density bin width (Å)
z the range of z coordinate required (-z/2,+z/2) (Å)

zero Perform zero temperature MD run

4.1.1.3 Further Comments on the CONTROL File

1. A number of the directives (or their mutually exclusive alternatives) are mandatory:

(a) timestep: specifying the simulation timestep;

(b) temp or zero : specifying the system temperature (not mutually exclusive);

(c) ewald sum or ewald precision or spme sum or spme precision or hke sum or hke
precision or coul or shift or distan or reaction or no elec: specifying the required
coulombic forces option;

(d) cut and delr: specifying the short range forces cutoff and Verlet strip;

(e) prim: specifying primary forces cutoff (if mult>2 only).

2. The job time and close time directives are required to ensure a controlled close down
procedure when a job runs out of time. The time specified by the job time directive indicates
the total time allowed for the job. (This must obviously be set equal to the time specified
to the operating system when the job is submitted.) The close time directive represents
the time DL POLY Classic will require to write and close all the data files at the end of
processing. This means the effective processing time limit is equal to the job time minus the
close time. Thus when DL POLY Classic reaches the effective job time limit it begins the
close down procedure with enough time in hand to ensure the files are correctly written. In
this way you may be sure the restart files etc. are complete when the job terminates. Note
that setting the close time too small will mean the job will crash before the files have been
finished. If it is set too large DL POLY Classic will begin closing down too early. How large
the close time needs to be to ensure safe close down is system dependent and a matter of
experience. It generally increases with the job size.

3. Note that the default time unit for job time is seconds, however this may be changed by
addition of an extra character after the number on the the directive line. Thus m will set it to
minutes; h to hours; and d to days. You can even skip the number altogether and put indef,
which will set the default job time to 1 million years, which should be enough for anyone.

100

c⃝STFC Section 4.1

Note however that you will lose the capability to end the job within the specified close time,
so you should be sure the job will finish without crashing.

4. The starting options for a simulation are governed by the keyword restart. If this is not
specified in the CONTROL file, the simulation will start as new. If specifed, it will either
continue a previous simulation (restart) or start a new simulation with initial temperature
scaling of the previous configuration (restart scale) or without initial temperature scaling
(restart noscale). Internally these options are handled by the integer variable keyres, which
is explained in table 4.1.

5. The various ensemble options (i.e. nve, nvt ber, nvt evans, nvt hoover, npt ber,
npt hoover, nst ber, nst hoover) are mutually exclusive, though none is mandatory (the
default is the NVE ensemble). These options are handled internally by the integer variable
keyens. The meaning of this variable is explained in table 4.2.

6. The force selection directives ewald sum, ewald precision, reaction, coul, shift, dist,
no elec and no vdw are handled internally by the integer variable keyfce. See table 4.4 for
an explanation of this variable. Note that these options are mutually exclusive.

7. The choice of reaction field electrostatics (directive reaction) requires also the specification
of the relative dielectric constant external to the cavity. This is specified in the eps directive.

8. DL POLY Classic uses as many as three different potential cutoffs. These are as follows:

(a) cut - this is the universal cutoff. It applies to the real space part of the electrostatics
calculations and to the van der Waals potentials if no other cutoff is applied;

(b) rvdw - this is the user-specified cutoff for the van der Waals potentials. If not specified
its value defaults to rcut. It cannot exceed cut;

(c) rprim - this is used in the multiple timestep algorithm to specify the primary atom
region (see section 2.5.8). It is ignored if the multiple timestep option is not used.

9. Some directives are optional. If not specified DL POLY Classic will take default values if
necessary. The defaults appear in the above table.

10. The zero directive enables a zero temperature simulation. This is intended as a crude energy
minimiser to help relax a system before a simulation begins. It should not be thought of as
a true energy minimisation method.

11. The optim directive enables a conjugate gradient energy minimisation of the configuration.
There are three additional options: energy, force and position, which decide convergence
on the basis of energy, force or position. The recommended option is force which is suitable
for most cases. Note that the additional parameter the user must supply is the tolerance
for the convergence. This must be appropriate for the chosen option. All are expressed in
DL POLY internal units. For the force option a value of about 1.0 is appropriate for many
cases.

12. Theminim directive enables a programmed minimisation, which combines conjugate gradient
minimisation with a molecular dynamics search. The three additional options: energy, force
and position refer to the CG minimisation, as described for the optim directive above. The
user must also supply an integer number of time steps for the interval between successive
CG minimisations and the convergence tolerance for each minimisation. The tolerance is
expressed in the appropriate internal units.

101

c⃝STFC Section 4.1

13. The DL POLY Classic multiple timestep option is invoked if the number appearing with
the mult directive is greater than 2. This number (stored in the variable multt) specifies
the number of timesteps (the multi-step) that elapse between partitions of the full Verlet
neighbour list into primary and secondary atoms.

14. If a multiple time-step is used, (i.e. multt>2), then statistics for radial distribution functions
are collected only at updates of the secondary neighbour list. The number specified on the
rdf directive (the variable nstbgr) means that RDF data are accumulated at intervals of
nstbgr×multt timesteps.

15. As a default, DL POLY Classic does not store statistical data during the equilibration pe-
riod. If the directive collect is used, equilibration data will be incorporated into the overall
statistics.

16. The directive delr specifies the width of the border to be used in the Verlet neighbour list
construction. The width is stored in the variable delr. The list is updated whenever two
or more atoms have moved a distance of more then delr/2 from their positions at the last
update of the Verlet list.

17. The directive impact is intended to simulate the effects of a high energy atomsic impact, such
as occurs in radiation damage. The user must supply the (integer) identity of the impacted
atom, the time step when the impact takes place (usually after equilibration), the recoil
energy of the impacted atom (in kilo electron volts), and the direction of the recoil (i.e. three
components of a unit vector specifying the direction).

18. The directive no fic activates and option that tries to prevent the occurrence of the ‘flying
ice cube’ that sometimes arises in long time simulations using the Berendsen method for ther-
mostating. This arises through accumulated numerical round-off, which gradually transfers
momentum from the system kinetic energy to the centre-of-mass momentum, resulting in a
zero Kelvin structure with a net linear momentum. This option removes the COM momentum
at user selected intervals.

19. The put shells on cores directive ensures that associated cores and shells start the simula-
tion at exactly the same place. It is not usual to do this however.

102

c⃝STFC Section 4.1

Table 4.1: Internal Restart Key

keyres meaning

0 start new simulation from CONFIG file,
and assign velocities from Gaussian distribution.

1 continue current simulation
2 start new simulation from CONFIG file,

and rescale velocities to desired temperature
3 start new simulation from CONFIG file,

without rescaling the velocities

Table 4.2: Internal Ensemble Key

keyens meaning

0 Microcanonical ensemble (NVE)
1 Evans NVT ensemble
2 Berendsen NVT ensemble
3 Nosé-Hoover NVT ensemble
4 Berendsen NPT ensemble
5 Nosé-Hoover NPT ensemble
6 Berendsen NσT ensemble
7 Nosé-Hoover NσT ensemble
8 Potential of mean force (NVE) ensemble

Table 4.3: Internal Trajectory File Key

keytrj meaning

0 coordinates only in file
1 coordinates and velocities in file
2 coordinates, velocities and forces in file

Table 4.4: Non-bonded force key

keyfce meaning

odd evaluate short-range potentials and electrostatics
even evaluate Electrostatic potential only

Electrostatics are evaluated as follows:

0†, 1‡ Ignore Electrostatic interactions
2, 3 Ewald summation
4, 5 distance dependent dielectric
6, 7 standard truncated Coulombic potential
8, 9 truncated and shifted Coulombic potential

10,11 Reaction Field electrostatics
12,13 SPME electrostatics
14,15 Hautman-Klein Ewald electrostatics

† keyfce = 0 means no non-bonded terms are evaluated.
‡ keyfce = 1 means only short-range potentials are evaluated.

103

c⃝STFC Section 4.1

4.1.2 The CONFIG File

The CONFIG file contains the dimensions of the unit cell, the key for periodic boundary conditions
and the atomic labels, coordinates, velocities and forces. This file is read by the subroutine sysgen.
(It is also read by the subroutine simdef if the ewald precision directive is used.) The first few
records of a typical CONFIG file are shown below:

Lennard-Jones Argon

2 3 255 -176595.066855

21.023998260000 0.000000000000 0.000000000000

0.000000000000 21.023998260000 0.000000000000

0.000000000000 0.000000000000 21.023998260000

Ar 1

7.798997031 2.409934763 5.506441637

-2.12339759919 -1.85576903413 0.125163024806

-417.940093856 292.432569373 -472.434039806

Ar 2

2.821617729 0.7180021261 7.417288159

1.07786776343 0.168433841280E-01 -0.269392807911

-188.920889755 -413.545510271 294.149380530

Ar 3

-8.113009749 2.773816641 5.199345225

0.388066563418 -1.37628108908 -1.24723236452

608.168259627 -422.414753563 -250.737138386

Ar 4

-10.31216635 2.857971798 8.090920140

1.76536230573 -1.58904200978 -2.48066272817

-66.0234000384 -47.6492437764 90.0074615387

etc.

4.1.2.1 Format

The file is fixed-formatted: integers as “i10”, reals as “f20.0”. The header record is formatted as
80 alphanumeric characters.

4.1.2.2 Definitions of Variables

record 1
header a80 title line

record 2
levcfg integer CONFIG file key. See table 4.5 for permitted values
imcon integer Periodic boundary key. See table 4.6 for permitted values
natms integer Number of atoms in file
engcfg real Configuration energy in DL POLY units

record 3 omitted if imcon = 0
cell(1) real x component of a cell vector
cell(2) real y component of a cell vector
cell(3) real z component of a cell vector

record 4 omitted if imcon = 0
cell(4) real x component of b cell vector

104

c⃝STFC Section 4.1

cell(5) real y component of b cell vector
cell(6) real z component of b cell vector

record 5 omitted if imcon = 0
cell(7) real x component of c cell vector
cell(8) real y component of c cell vector
cell(9) real z component of c cell vector

Subsequent records consists of blocks of between 2 and 4 records depending on the value of the
levcfg variable. Each block refers to one atom. The atoms must be listed sequentially in order of
increasing index. Within each block the data are as follows:

record i
atmnam a8 atom name.
index integer atom index
atmnum integer atomic number

record ii
xxx real x coordinate
yyy real y coordinate
zzz real z coordinate

record iii included only if levcfg > 0
vxx real x component of velocity
vyy real y component of velocity
vzz real x component of velocity

record iv included only if levcfg > 1
fxx real x component of force
fyy real y component of force
fzz real z component of force

Note that on record i only the atom name is mandatory, any other items are not read by
DL POLY Classic but may be added to aid alternative uses of the file, for example the DL POLY Classic
Graphical User Interface [9].

4.1.2.3 Further Comments

The CONFIG file has the same format as the output files REVCON (section 4.2.3) and CFGMIN
(section 3.2.4). When restarting from a previous run of DL POLY Classic (i.e. using the restart,
restart scale or restart noscale directives in the CONTROL file - above), the CONFIG file must
be replaced by the REVCON file, which is renamed as the CONFIG file. The copy macro in the
execute sub-directory of DL POLY Classic does this for you.

105

c⃝STFC Section 4.1

Table 4.5: CONFIG file key (record 2)

levcfg meaning

0 Coordinates included in file
1 Coordinates and velocities included in file
2 Coordinates, velocities and forces included in file

Table 4.6: Periodic boundary key (record 2)

imcon meaning

0 no periodic boundaries
1 cubic boundary conditions
2 orthorhombic boundary conditions
3 parallelepiped boundary conditions
4 truncated octahedral boundary conditions
5 rhombic dodecahedral boundary conditions
6 x-y parallelogram boundary conditions with

no periodicity in the z direction
7 hexagonal prism boundary conditions

106

c⃝STFC Section 4.1

4.1.3 The FIELD File

The FIELD file contains the force field information defining the nature of the molecular forces. It
is read by the subroutine sysdef. Excerpts from a force field file are shown below. The example
is the antibiotic Valinomycin in a cluster of 146 water molecules.

Valinomycin Molecule with 146 SPC Waters

UNITS kcal

MOLECULES 2

Valinomycin

NUMMOLS 1

ATOMS 168

O 16.0000 -0.4160 1

OS 16.0000 -0.4550 1

" " " "

" " " "

HC 1.0080 0.0580 1

C 12.0100 0.4770 1

BONDS 78

harm 31 19 674.000 1.44900

harm 33 31 620.000 1.52600

" " " " "

" " " " "

harm 168 19 980.000 1.33500

harm 168 162 634.000 1.52200

CONSTRAINTS 90

20 19 1.000017

22 21 1.000032

" " "

" " "

166 164 1.000087

167 164 0.999968

ANGLES 312

harm 43 2 44 200.00 116.40

harm 69 5 70 200.00 116.40

" " " " " "

" " " " " "

harm 18 168 162 160.00 120.40

harm 19 168 162 140.00 116.60

DIHEDRALS 371

harm 1 43 2 44 2.3000 180.00

harm 31 43 2 44 2.3000 180.00

" " " " " " "

" " " " " " "

cos 149 17 161 16 10.500 180.00

cos 162 19 168 18 10.500 180.00

FINISH

SPC Water

NUMMOLS 146

107

c⃝STFC Section 4.1

ATOMS 3

OW 16.0000 -0.8200

HW 1.0080 0.4100

HW 1.0080 0.4100

CONSTRAINTS 3

1 2 1.0000

1 3 1.0000

2 3 1.63299

FINISH

VDW 45

C C lj 0.12000 3.2963

C CT lj 0.08485 3.2518

" " " " "

" " " " "

" " " " "

OW OS lj 0.15100 3.0451

OS OS lj 0.15000 2.9400

CLOSE

4.1.3.1 Format

The FIELD file is free formatted (though it should be noted that atom names are limited to 8
characters and potential function keys are a maximum of 4 characters). The contents of the file
are variable and are defined by the use of directives. Additional information is associated with
the directives. The file is not case sensitive.

4.1.3.2 Definitions of Variables

The file divides into three sections: general information, molecular descriptions, and non-bonded
interaction descriptions, appearing in that order in the file.

4.1.3.2.1 General information

The first record in the FIELD file is the title. It must be followed by the units directive. Both
of these are mandatory. These records may optionally be followed by the neut directive.

record 1
header a80 field file header

record 2
units a40 Unit of energy used for input and output

record 3 (optional)
neut a40 activate the neutral/charge groups option for

the electrostatic calculations

The energy units on the units directive are described by additional keywords:

a eV, for electron-volts

b kcal, for k-calories mol−1

c kJ, for k-Joules mol−1

108

c⃝STFC Section 4.1

d K, for Kelvin

e internal, for DL POLY Classic internal units (10 J mol−1).

If no units keyword is entered, DL POLY Classic units are assumed for both input and output.
The units keyword may appear anywhere on the data record provided it does not exceed column
40. The units directive only affects the input and output interfaces, all internal calculations are
handled using DL POLY Classic units.

4.1.3.2.2 Molecular details

It is important for the user to understand that there is an structural correspondence between
the FIELD file and the CONFIG file described above. It is required that the order of specification
of molecular types and their atomic constituents in the FIELD file follows the order in which
they appear in the CONFIG file. Failure to adhere to this common sequence will be detected by
DL POLY Classic and result in premature termination of the job. It is therefore essential to work
from the CONFIG file when constructing the FIELD file. It is not as difficult as it sounds!

The entry of the molecular details begins with the mandatory directive:

molecules n

where n is an integer specifying the number of different types of molecule appearing in the FIELD
file. Once this directive has been encountered, DL POLY Classic enters the molecular description
environment in which only molecular decription keywords and data are valid.

Immediately following the molecules directive, are the records defining individual molecules:

1. name-of-molecule
which can be any character string up to 80 characters in length. (Note: this is not a directive,
just a simple character string.)

2. nummols n
where n is the number of times a molecule of this type appears in the simulated system. The
molecular data then follow in subsequent records:

3. atoms n
where n indicates the number of atoms in this type of molecule. A number of records follow,
each giving details of the atoms in the molecule i.e. site names, masses and charges. Each
record carries the entries:

sitnam a8 atomic site name
weight real atomic site mass
chge real atomic site charge
nrept integer repeat counter
ifrz integer ‘frozen’ atom (if ifrz> 0)
igrp integer neutral/charge group number

Note that these entries are order sensitive. Do not leave blank entries unless all parameters
appearing after the last specified are void. The integer nrept need not be specified (in which
case a value of 1 is assumed.) A number greater than 1 specified here indicates that the next

109

c⃝STFC Section 4.1

(nrept - 1) entries in the CONFIG file are ascribed the atomic characteristics given in the
current record. The sum of the repeat numbers for all atoms in a molecule should equal the
number specified by the atoms directive.

4. shell n m
where n is the number of core-shell units and m is an integer specifying which shell model is
required:

• m=1 for adiabatic shell model;

• m=2 for relaxed shell model;

Each of the subsequent n records contains:

index 1 integer site index of core
index 2 integer site index of shell
k real force constant of core-shell spring
k4 real quartic (anharmonic) force constant of spring

The spring force constant k is entered in units of engunit Å−2, (or engunit Å−4 for k4),
where engunit is the energy unit specified in the units directive. The general spring potential
has the form

Vspring(rij) =
1

2
kr2ij +

1

4
k4r

4
ij ,

where usually k >> k4.

The adiabatic and relaxed shell models are mutually exclusive options in the same simulation.

Note that the atomic site indices referred to in this table are indices arising from num-
bering each atom in the molecule from 1 to the number specified in the atoms directive
for this molecule. This same numbering scheme should be used for all descriptions of this
molecule, including the bonds, constraints, angles, and dihedrals entries described below.
DL POLY Classic will itself construct the global indices for all atoms in the systems.

This directive (and associated data records) need not be specified if the molecule contains no
core-shell units.

5. bonds n
where n is the number of flexible chemical bonds in the molecule. Each of the subsequent n
records contains:

bond key a4 see table 4.7
index 1 integer first atomic site in bond
index 2 integer second atomic site in bond
variable 1 real potential parameter see table 4.7
variable 2 real potential parameter see table 4.7
variable 3 real potential parameter see table 4.7
variable 4 real potential parameter see table 4.7

The meaning of these variables is given in table 4.7. This directive (and associated data
records) need not be specified if the molecule contains no flexible chemical bonds. See the
note on the atomic indices appearing under the shell directive above.

110

c⃝STFC Section 4.1

Table 4.7: Chemical bond potentials

key potential type Variables (1-4) functional form

harm Harmonic k r0 U(r) = 1
2k(r − r0)

2

-hrm

mors Morse E0 r0 k U(r) = E0[{1− exp(−k(r − r0))}2 − 1]
-mrs

12-6 12-6 A B U(r) =
(

A
r12

)
−
(
B
r6

)
-126

rhrm Restraint k r0 rc U(r) = 1
2k(r − r0)

2 |r − r0| ≤ rc
U(r) = 1

2kr
2
c + krc(|r − r0| − rc) |r − r0| > rc

-rhm

quar Quartic k r0 k′ k′′ U(r) = k
2 (r − r0)

2 + k′

3 (r − r0)
3 + k′′

4 (r − r0)4
-qur

buck Buckingham A ρ C U(r) = Aexp(−r/ρ)− C/r6
-bck

fene FENE k Ro ∆ U(rij) = −0.5 k R2
o ln

[
1−

(
rij−∆
Ro

)2]
-fen

coul Coulombic qi qj U(rij) =
1

4πϵ
qiqj
rij

-cou

Note: bond potentials with a dash (-) as the first character of the keyword, do not contribute
to the excluded atoms list (see section 2.1). In this case DL POLY Classic will also calculate the
nonbonded pair potentials between the described atoms, unless these are deactivated by another
potential specification.

6. constraints n
where n is the number of constraint bonds in the molecule. Each of the following n records
contains:

index 1 integer first atomic index
index 2 integer second atomic index
bondlength real constraint bond length

This directive (and associated data records) need not be specified if the molecule contains
no constraint bonds. See the note on the atomic indices appearing under the shell directive
above.

7. pmf b

111

c⃝STFC Section 4.1

where b is the potential of mean force bondlength (Å). There follows the definitions of two
PMF units:

(a) pmf unit n1
where n1 is the number of sites in the first unit. The subsequent n1 records provide the
site indices and weighting. Each record contains:

index integer atomic site index
weight real site weighting

(b) pmf unit n2
where n2 is the number of sites in the second unit. The subsequent n2 records provide
the site indices and weighting. Each record contains:

index integer atomic site index
weight real site weighting

This directive (and associated data records) need not be specified if no PMF constraints are
present. See the note on the atomic indices appearing under the shell directive above. The
pmf bondlength applies to the distance between the centres of the two pmf units. The centre,
R, of each unit is given by

R =

∑
αwαrα∑
αwα

where rα is a site position and wα the site weighting. Note that the pmf constraint is in-
tramolecular. To define a constraint between two molecules, the molecules must be described
as part of the same DL POLY “molecule”. This is illustrated in test case 6, where a pmf
constraint is imposed between a potassium ion and the centre of mass of a water molecule.
DL POLY Classic allows only one type of pmf constraint per system. The value of nummols
for this molecule determines the number of pmf constraint in the system.

Note that the directive ensemble pmf must be specified in the CONTROL file for this
option to be implemented correctly.

8. angles n
where n is the number of valence angle bonds in the molecule. Each of the n records following
contains:

angle key a4 potential key. See table 4.8
index 1 integer first atomic index
index 2 integer second atomic index (central site)
index 3 integer third atomic index
variable 1 real potential parameter see table 4.8
variable 2 real potential parameter see table 4.8
variable 2 real potential parameter see table 4.8
variable 3 real potential parameter see table 4.8
variable 4 real potential parameter see table 4.8

The meaning of these variables is given in table 4.8. See the note on the atomic indices
appearing under the shell directive above. This directive (and associated data records) need
not be specified if the molecule contains no angular terms.

112

c⃝STFC Section 4.1

Table 4.8: Valence Angle potentials

key potential type Parameters p1-p4 functional form†

harm Harmonic k θ0 U(θ) = k
2 (θ − θ0)

2

-hrm

quar Quartic k θ0 k′ k′′ U(θ) = k
2 (θ − θ0)

2 + k′

3 (θ − θ0)
3 + k′′

4 (θ − θ0)4
-qur

thrm Truncated harmonic k θ0 ρ U(θ) = k
2 (θ − θ0)

2 exp[−(r8ij + r8ik)/ρ
8]

-thm

shrm Screened harmonic k θ0 ρ1 ρ2 U(θ) = k
2 (θ − θ0)

2 exp[−(rij/ρ1 + rik/ρ2)]
-shm

bvs1 Screened Vessal[30] k θ0 ρ1 ρ2 U(θ) = k
8(θ−θ0)2

{[
(θ0 − π)2 − (θ − π)2

]2}
-bv1 exp[−(rij/ρ1 + rik/ρ2)]

bvs2 Truncated Vessal[31] k θ0 a ρ U(θ) = k[θa(θ − θ0)2(θ + θ0 − 2π)2 − a
2π

a−1

-bv2 (θ − θ0)2(π − θ0)3] exp[−(r8ij + r8ik)/ρ
8]

hcos Harmonic Cosine k θ0 U(θ) = k
2 (cos(θ)− cos(θ0))

2

-hcs

cos Cosine A δ m U(θ) = A[1 + cos(mθ − δ)]
-cos

mmsb MM Stretch-bend A θ0 dab dac U(θ) = A(θ − θ0)(rab − dab)(rac − dac)
-msb

stst Compass A dab dac Ubac = A(rab − dab)(rac − dac)
-sts stretch-stretch

stbe Compass A θ0 dab Ubac = A(θ − θ0)(rab − dab)
-stb stretch-bend

cmps Compass A B C θ0 Ubac = A(rab − dab)(rac − dac) + (θ − θ0)∗
-cmp all terms p5 = dab p6 = dac (B(rab − dab) + C(rac − dac))

†θ is the a-b-c angle.

Note: valence angle potentials with a dash (-) as the first character of the keyword, do not
contribute to the excluded atoms list (see section 2.1). In this case DL POLY Classic will calculate
the nonbonded pair potentials between the described atoms.

113

c⃝STFC Section 4.1

9. dihedrals n
where n is the number of dihedral interactions present in the molecule. Each of the following
n records contains:

dihedral key a4 potential key. See table 4.9
index 1 integer first atomic index
index 2 integer second atomic index
index 3 integer third atomic index
index 4 integer fourth atomic index
variable 1 real potential parameter see table 4.9
variable 2 real potential parameter see table 4.9
variable 3 real potential parameter see table 4.9
variable 4 real 1-4 electrostatic interaction scale factor.
variable 5 real 1-4 Van der Waals interaction scale factor.

The meaning of the variables 1-3 is given in table 4.9. The variables 4 and 5 specify the scaling
factor for the 1-4 electrostatic and Van der Waals nonbonded interactions respectively. This
directive (and associated data records) need not be specified if the molecule contains no
dihedral angle terms. See the note on the atomic indices appearing under the shell directive
above.

Table 4.9: Dihedral Angle Potentials

key potential type Variables (1-4) functional form‡

cos Cosine A δ m U(ϕ) = A [1 + cos(mϕ− δ)]

harm Harmonic k ϕ0 U(ϕ) = 1
2k(ϕ− ϕ0)

2

hcos Harmonic cosine k ϕ0 U(ϕ) = k
2 (cos(ϕ)− cos(ϕ0))

2

cos3 Triple cosine A1 A2 A3 U(ϕ) = 1
2A1(1 + cos(ϕ)) + 1

2A2(1− cos(2ϕ))
+1

2A3(1 + cos(3ϕ))

ryck Ryckaert- A U(ϕ) = A(a0 + a1cosϕ− a2cos2ϕ+ a3cos
3ϕ+

Bellemans a4cos
4ϕ+ a5cos

5ϕ) [a0 → a5 pre-set]

rbf Fluorinated B U(ϕ) = B(b0 − b1cosϕ− b2cos2ϕ− b3cos3ϕ+
Ryckaert- b4cos

4ϕ+ b5cos
5ϕ+ b6exp(−b7(ϕ− π))

Bellemans [b0 → b6 pre-set]

opls OPLS A0 A1 A2 A3 U(ϕ) = A0 +
1
2(A1(1 + cos(ϕ)) +A2(1− cos(2ϕ))
+A3(1 + cos(3ϕ)))

‡ϕ is the a-b-c-d dihedral angle.

10. inversions n
where n is the number of inversion interactions present in the molecule. Each of the following

114

c⃝STFC Section 4.1

n records contains:

inversion key a4 potential key. See table 4.10
index 1 integer first atomic index
index 2 integer second atomic index
index 3 integer third atomic index
index 4 integer fourth atomic index
variable 1 real potential parameter see table 4.10
variable 2 real potential parameter see table 4.10

The meaning of the variables 1-2 is given in table 4.10. This directive (and associated data
records) need not be specified if the molecule contains no inversion angle terms. See the note
on the atomic indices appearing under the shell directive above.

Table 4.10: Inversion Angle Potentials

key potential type Variables (1-2) functional form‡

harm Harmonic k ϕ0 U(ϕ) = 1
2k(ϕ− ϕ0)

2

hcos Harmonic cosine k ϕ0 U(ϕ) = k
2 (cos(ϕ)− cos(ϕ0))

2

plan Planar A U(ϕ) = A [1− cos(ϕ)]

calc Calcite A B U(u) = Au2 +Bu4

‡ϕ is the inversion angle.

Note that the calcite potential is not dependent on an angle ϕ, but on a displacement u. See
section 2.2.8 for details.

11. rigid n
where n is the number of rigid units in the molecule. It is followed by at least n records, each
specifying the sites in a rigid unit:

m integer number of sites in rigid unit
site 1 integer first site atomic index
site 2 integer second site atomic index
site 3 integer third site atomic index
.. .. etc.
site m integer m’th site atomic index

Up to 15 sites can be specified on the first record. Additional records are used if necessary.
Up to 16 sites are specified per record thereafter.

This directive (and associated data records) need not be specified if the molecule contains no
rigid units. See the note on the atomic indices appearing under the shell directive above.

115

c⃝STFC Section 4.1

12. teth n
where n is the number of tethered atoms in the molecule. It is followed by n records specifying
the tethered sites in the molecule:

tether key a4 tethering potential key see table 4.11
index integer atomic index
variable 1 real potential parameter see table 4.11
variable 2 real potential parameter see table 4.11
variable 3 real potential parameter see table 4.11
variable 4 real potential parameter see table 4.11

This directive (and associated data records) need not be specified if the molecule contains
no tethered atoms. See the note on the atomic indices appearing under the shell directive
above.

Table 4.11: Tethering potentials

key potential type Variables (1-3) functional form

harm Harmonic k U(r) = 1
2kr

2

rhrm Restraint k rc U(r) = 1
2kr

2 r ≤ rc
U = 1

2kr
2
c + krc(r − rc) r > rc

quar Quartic k k′ k′′ U(r) = k
2r

2 + k′

3 r
3 + k′′

4 r
4

13. finish
This directive is entered to signal to DL POLY Classic that the entry of the details of a
molecule has been completed.

The entries for a second molecule may now be entered, beginning with the name-of-molecule
record and ending with the finish directive.

The cycle is repeated until all the types of molecules indicated by the molecules directive
have been entered.

The user is recommended to look at the example FIELD files in the data directory to see how
typical FIELD files are constructed.

4.1.3.3 Non-bonded Interactions

Non-bonded interactions are identified by atom types as opposed to specific atomic indices. The
first type of non-bonded potentials are the pair potentials. The input of pair potential data is
signalled by the directive:

vdw n

116

c⃝STFC Section 4.1

where n is the number of pair potentials to be entered. There follows n records, each specifying
a particular pair potential in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type
key a4 potential key. See table 4.12
variable 1 real potential parameter see table 4.12
variable 2 real potential parameter see table 4.12
variable 3 real potential parameter see table 4.12
variable 4 real potential parameter see table 4.12
variable 5 real potential parameter see table 4.12

The variables pertaining to each potential are described in table 4.12. Note that any pair potential
not specified in the FIELD file, will be assumed to be zero.

The specification of three body potentials is initiated by the directive:

tbp n

where n is the number of three-body potentials to be entered. There follows n records, each
specifying a particular three body potential in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type (central site)
atmnam 3 a8 third atom type
key a4 potential key. See table 4.13

variable 1 real potential parameter see table 4.13
variable 2 real potential parameter see table 4.13
variable 3 real potential parameter see table 4.13
variable 4 real potential parameter see table 4.13
variable 5 real cutoff range for this potential (Å)

The variables pertaining to each potential are described in table 4.13. Note that the fifth variable
is the range at which the three body potential is truncated. The distance is in Å, measured from
the central atom.

The specification of four body potentials is initiated by the directive:

fbp n

where n is the number of four-body potentials to be entered. There follows n records, each
specifying a particular four-body potential in the following manner:

atmnam 1 a8 first atom type (central site)
atmnam 2 a8 second atom type
atmnam 3 a8 third atom type
atmnam 4 a8 fourth atom type

117

c⃝STFC Section 4.1

Table 4.12: Definition of pair potential functions and variables

key potential type Variables (1-5) functional form

12-6 12-6 A B U(r) =
(

A
r12

)
−
(
B
r6

)
lj Lennard-Jones ϵ σ U(r) = 4ϵ

[(
σ
r

)12 − (σr)6]
nm n-m Eo n m r0 U(r) = Eo

(n−m)

[
m
(ro
r

)n − n (ror)m]
buck Buckingham A ρ C U(r) = A exp

(
− r

ρ

)
− C

r6

bhm Born-Huggins A B σ C D U(r) = A exp[B(σ − r)]− C
r6
− D

r8

-Meyer

hbnd 12-10 H-bond A B U(r) =
(

A
r12

)
−
(

B
r10

)
snm Shifted force† Eo n m r0 rc

‡ U(r) = αEo
(n−m)×

n-m [34]
[
mβn

{(
ro
r

)n − (1
γ

)n}
− nβm

{(
ro
r

)m − (1
γ

)m}]
+nmαEo

(n−m)

(
r−γro
γro

){(
β
γ

)n
−
(
β
γ

)m}
mors Morse E0 r0 k U(r) = E0[{1− exp(−k(r − r0))}2 − 1]

wca WCA ϵ σ U(r) = 4ϵ
[(

σ
r

)12 − (σr)6]+ ϵ (r < σ ∗ 21/6)

tab Tabulation tabulated potential (see section 4.1.5

† Note: in this formula the terms α, β and γ are compound expressions involving the variables
Eo, n,m, r0 and rc. See section 2.3.1 for further details.
‡ Note: rc defaults to the general van der Waals cutoff (rvdw or rcut) if it is set to zero or not
specified in the FIELD file.

key a4 potential key. See table 4.14
variable 1 real potential parameter see table 4.14
variable 2 real potential parameter see table 4.14
variable 3 real cutoff range for this potential (Å)

The variables pertaining to each potential are described in table 4.14. Note that the third variable
is the range at which the four-body potential is truncated. The distance is in Å, measured from
the central atom.

4.1.3.4 Metal Potentials

Metal potentials in DL POLY Classic are based on the embedded atom model (EAM) [37, 38] and
the Finnis-Sinclair model (FSM)[3] .

118

c⃝STFC Section 4.1

Table 4.13: Three-body potentials

key potential type Variables (1-4) functional form†

thrm Truncated harmonic k θ0 ρ U(θ) = k
2 (θ − θ0)

2 exp[−(r8ij + r8ik)/ρ
8]

shrm Screened harmonic k θ0 ρ1 ρ2 U(θ) = k
2 (θ − θ0)

2 exp[−(rij/ρ1 + rik/ρ2)]

bvs1 Screened Vessal[30] k θ0 ρ1 ρ2 U(θ) = k
8(θ−θ0)2

{[
(θ0 − π)2 − (θ − π)2

]2}
exp[−(rij/ρ1 + rik/ρ2)]

bvs2 Truncated Vessal[31] k θ0 a ρ U(θ) = k[θa(θ − θ0)2(θ + θ0 − 2π)2 − a
2π

a−1

(θ − θ0)2(π − θ0)3] exp[−(r8ij + r8ik)/ρ
8]

hbnd H-bond [7] Dhb Rhb U(θ) = Dhbcos
4(θ)[5(Rhb/rjk)

12 − 6(Rhb/rjk)
10]

†θ is the a-b-c angle.

Table 4.14: Four-body Potentials

key potential type Variables (1-2) functional form‡

harm Harmonic k ϕ0 U(ϕ) = 1
2k(ϕ− ϕ0)

2

hcos Harmonic cosine k ϕ0 U(ϕ) = k
2 (cos(ϕ)− cos(ϕ0))

2

plan Planar A U(ϕ) = A [1− cos(ϕ)]

‡ϕ is the inversion angle.

The EAM potentials are tabulated and are supplied to DL POLY Classic in the input file
TABEAM (see 4.1.6).

The FSM potentials are analytical and DL POLY Classic supports the explicit forms due to:
Finnis and Sinclair [3] ; Sutton and Chen [40, 41] ; and Gupta [43] ;

Metal potentials, like van der Waals potentials are also non-bonded potentials and are char-
acterised by atom types rather than specific atomic indices. The input of metal potential data is
signalled by the directive:

metal n

where n is the number of metal potentials to be entered. There follows n records, each specifying
a particular metal potential in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type
key a4 potential key. See table 4.15
variable 1 real potential parameter see table 4.15

119

c⃝STFC Section 4.1

variable 2 real potential parameter see table 4.15
variable 3 real potential parameter see table 4.15
variable 4 real potential parameter see table 4.15
variable 5 real potential parameter see table 4.15
variable 6 real potential parameter see table 4.15
variable 7 real potential parameter see table 4.15

The variables pertaining to each potential are described in table 4.15. Note that any metal potential
not specified in the FIELD file, will be assumed to be zero. This includes cross terms for alloys!

Table 4.15: Metal Potential

key potential type Variables (1-7) functional form

eam EAM tabulated potential

fnsc Finnis-Sinclair c0 c1 c2 c A d β Ui(r) =
1
2

∑
j ̸=i

(rij − c)2(c0 + c1rij + c2r
2
ij)−A

√
ρi

ρi =
∑
j ̸=i

[
(rij − d)2 + β

(rij−d)3

d

]

stch Sutton-Chen ϵ a n m c Ui(r) = ϵ

[
1
2

∑
j ̸=i

(
a
rij

)n
− c√ρi

]
ρi =

∑
j ̸=i

(
a
rij

)m
gupt Gupta A r0 p B qij Ui(r) =

1
2

∑
j ̸=i

A exp
(
−p rij−r0

r0

)
−B√ρi

ρi =
∑
j ̸=i

exp
(
−2qij rij−r0

r0

)

Both EAM and FSM potentials can handle alloys, but care must be taken to enter the cross
terms of the potentials explicitly. Note that the rules for defining cross terms of the potential are
not the usual rules encountered in Lennard-Jones systems (see section 2.3.5).

4.1.3.5 The Tersoff Potential

The Tersoff potential [5] is designed to reproduce the effects of covalency in systems composed
of group 4 elements in the periodic table (carbon, silicon, germanium etc) and their alloys. Like
the metal potentials these are also non-bonded potentials characterised by atom types rather than
specific atomic indices. The input of Tersoff potential data is signalled by the directive:

tersoff n

Where n is the number of specified Tersoff potentials. It is followed by 2n records specifying n
particular Tersoff single atom type parameters and n(n+ 1)/2 records specifying cross atom type
parameters in the following manner:

120

c⃝STFC Section 4.1

potential 1 : record 1
atmnam a8 atom type
key a4 potential key, see Table 4.16
variable 1 real potential parameter, see Table 4.16
variable 2 real potential parameter, see Table 4.16
variable 3 real potential parameter, see Table 4.16
variable 4 real potential parameter, see Table 4.16
variable 5 real cutoff range for this potential (Å) 4.16

potential 1 : record 2
variable 6 real potential parameter, see Table 4.16
variable 7 real potential parameter, see Table 4.16
variable 8 real potential parameter, see Table 4.16
variable 9 real potential parameter, see Table 4.16
variable 10 real potential parameter, see Table 4.16
variable 11 real potential parameter, see Table 4.16
...
...

potential n : record 2n− 1
...

potential n : record 2n
...

cross term 1 : record 2n+ 1
atmnam 1 a8 first atom type
atmnam 2 a8 second atom type
variable a real potential parameter, see Table 4.16
variable b real potential parameter, see Table 4.16
...
...

cross term n(n+ 1)/2 : record 2n+ n(n+ 1)/2
...

The variables pertaining to each potential are described in Table 4.16.
Note that the 11 parameters A to h required for the cross interactions between dissimilar

elements are calculated internally by DL POLY Classic using the prescription given by Tersoff [5].
There is no prescription for the χ and ω cross parameters, so these must be given explicitly.

Note also that the fifth variable is the range at which the particular Tersoff potential is truncated.
The distance is in Å.

Table 4.16: Tersoff Potential

key potential type Variables (1-5,6-11,a-b) functional form

ters Tersoff A a B b R Potential form
(single) S β η c d h as shown in

Section
(cross) χ ω 2.3.3

121

c⃝STFC Section 4.1

4.1.3.6 External Field

The presence of an external field is flagged by the extern directive. The next line in the FIELD
file should have another directive indicating what type of field is to be applied. On the following
lines comes the mxfld parameters, five per line, that describe the field. In the include files supplied
with DL POLY Classic mxfld is set to 10.
The variables pertaining to each potential are described in table 4.17.

Table 4.17: External fields

key potential type Variables (1-5) functional form†

elec Electric field Ex Ey Ez F = q.E

oshm Oscillating Shear A n F x = Acos(2nπ.z/Lz)

shrx Continuous Shear A z0 | z |> z0: vx = (1/2)A(| z | /z)

grav Gravitational Field Gx Gy Gz F = m.G

magn Magnetic Field Hx Hy Hz F = q(v ×H)

sphr Containing Sphere A R0 n Rcut r > Rcut: F = A(R0 − r)−n

zbnd Repulsive wall A Z0 f = ±1 zf > Z0f : Fz = −A(z − Z0)
(harmonic)

zres Restraint zone n1 n2 A zmin zmax F = A(zmax − zcom) : zcom > zmax

(harmonic) F = A(zmin − zcom) : zcom < zmin

zcom =
∑n2

i=n1
mizi/M

M =
∑n2

i=n1
mi

4.1.3.7 Closing the FIELD File

The FIELD file must be closed with the directive:

close

which signals the end of the force field data. Without this directive DL POLY Classic will abort.

4.1.4 The REVOLD File

This file contains statistics arrays from a previous job. It is not required if the current job is not a
continuation of a previous run (ie. if the restart directive is not present in the CONTROL file - see
above). The file is unformatted and therefore not readable by normal people. DL POLY Classic
normally produces the file REVIVE (see section 4.2.5) at the end of a job which contains the
statistics data. REVIVE should be copied to REVOLD before a continuation run commences.
This may be done by the copy macro supplied in the execute sub-directory of DL POLY Classic.

122

c⃝STFC Section 4.1

4.1.4.1 Format

The REVOLD file is unformatted. All variables appearing are written in native real*8 represen-
tation. Nominally integer quantities (e.g. the timestep number nstep) are represented by the the
nearest real number. The contents are as follows (the dimensions of array variables are given in
brackets and are defined in the appropriate Fortran modules).

record 1:
nstep timestep of final configuration
numacc number of configurations used in averages
numrdf number of configurations used in rdf averages
chit thermostat momentum
chip barostat momentum
conint conserved quantity for selected ensemble
nzden number of configurations used in z density

record 2:
virtot total system virial
vircom rigid body COM virial
eta scaling factors for simulation cell matrix elements (9)
strcns constraint stress tensor elements (9)
strbod rigid body stress tensor elements (9)

record 3:
stpval instantaneous values of thermodynamic variables (mxnstk)

record 4:
sumval average values of thermodynamic variables (mxnstk)

record 5:
ssqval fluctuation (squared) of thermodynamic variables (mxnstk)

record 6:
zumval running totals of thermodynamic variables (mxnstk)

record 7:
ravval rolling averages of thermodynamic variables (mxnstk)

record 8:
stkval stacked values of thermodynamic variables (mxstak×mxnstk)

record 9:
xx0 x component of atomic displacement (MSD) (mxatms)
yy0 y component of atomic displacement (MSD) (mxatms)
zz0 z component of atomic displacement (MSD) (mxatms)

record 10:
xxs x-coordinates of tether points (mxatms)
yys y-coordinates of tether points (mxatms)
zzs z-coordinates of tether points (mxatms)

record 11:
rdf (Optional) RDF array (mxrdf×mxvdw)

record 12:
zdens (Optional) z-density array (mxrdf×mxsvdw)

4.1.4.2 Further Comments

Note that recompiling DL POLY Classic with a different dl params.inc file, may render any
existing REVOLD file unreadable by the code.

123

c⃝STFC Section 4.1

4.1.5 The TABLE File

The TABLE file provides an alternative way of reading in the short range potentials - in tabular
form. This is particularly useful if an analytical form of the potential does not exist or is too
complicated to specify in the forgen subroutine. The table file is read by the subroutine fortab.f
in the vdw terms.f file..

The option of using tabulated potentials is specified in the FIELD file (see above). The specific
potentials that are to be tabulated are indicated by the use of the tab keyword on the record
defining the short range potential (see table 4.12). The directive vdwtable may be used in place
of vdw to indicate that one or more of the short ranged potentials is specified in the form of a
table.

4.1.5.1 Format

The file is fixed-formatted with integers as “i10”, reals as “e15.8”. Character variables are read as
“a8”. The header record is formatted as 80 alphanumeric characters.

4.1.5.2 Definitions of Variables

record 1
header a80 file header

record 2
delpot real mesh resolution in Å
cutpot real cutoff used to define tables Å
ngrid integer number of grid points in tables

The subsequent records define each tabulated potential in turn, in the order indicated by the
specification in the FIELD file. Each potential is defined by a header record and a set of data
records with the potential and force tables.

header record:
atom 1 a8 first atom type
atom 2 a8 second atom type

potential data records: (number of data records = Int((ngrid+3)/4))
data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4

force data records: (number of data records = Int((ngrid+3)/4))
data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4

4.1.5.3 Further Comments

It should be noted that the number of grid points in the TABLE file should not be less than the num-
ber of grid points DL POLY Classic is expecting. (This number is given by the parameter mxgrid,

124

c⃝STFC Section 4.1

which is defined in the parset.f subroutine in the setup program.f file.) DL POLY Classic will
re-interpolate the tables if ngrid≥mxgrid, but will abort if ngrid<mxgrid.

The potential and force tables are used to fill the internal arrays vvv and ggg respectively (see
section 2.3.1). The contents of force arrays are derived from the potential via the formula:

G(r) = −r ∂
∂r
U(r).

Note this is a virial expression and not the same as the true force.
Important The potential and force arrays in the TABLE file are written in the same units as

the FIELD file. So if you specified a particular unit using the UNITS directive in the FIELD file,
the same units are expected here. It is useful to note that the definition of the force arrays given
above means that the units are the same as for the potential - i.e. are handled using the same
conversion factors.

4.1.6 The TABEAM File

The TABEAM file contains the tabulated potential functions (no explicit analytic form) describing
the metal interactions in the MD system. This file is read by the subroutine mettab.

The EAM potential for an n component metal alloy requires the specification of n electron
density functions (one for each atom type) and n embedding functions (again one for each atom
type) and n(n + 1)/2 cross pair potential functions. This makes n(n + 5)/2 functions in total.
Note that the option of using EAM interactions must also be explicitly declared in the FIELD file
so that for the n component alloy there are n(n+ 1)/2 cross pair potential (eam) keyword entries
in FIELD (see above). (Note that all metal interactions must be of the same type!)

4.1.6.1 The TABEAM File Format

The file is free-formatted but blank and commented lines are not allowed.

4.1.6.2 Definitions of Variables

record 1
header a100 file header

record 2
numpot integer number of potential functions in file

The subsequent records define the n(n + 5)/2 functions for an n component alloy - n electron
density functions (one for each atom type) - density keyword, n embedding functions (again one
for each atom type) - embeding keyword, and n(n + 1)/2 cross pair potential functions - pairs
keyword. The functions may appear in any random order in TABEAM as their identification is
based on their unique keyword, defined first in the function’s header record. The header record is
followed by a predefined number of data records as a maximum of four data per record are
read in - allowing for incompletion of the very last record.

header record:
keyword a4 type of EAM function: dens, embed or pair
atom 1 a8 first atom type
atom 2 a8 second atom type - only specified for pair potential functions
ngrid integer number of function data points to read in
limit 1 real lower interpolation limit in Å for dens and pair

125

c⃝STFC Section 4.1

or in density units for embed
limit 2 real upper interpolation limit in Å for dens and pair

or in density units for embed
function data records: (number of data records = Int((ngrid+3)/4))
data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4

126

c⃝STFC Section 4.2

4.2 The OUTPUT Files

DL POLY Classic produces up to eight output files: HISTORY, OUTPUT, REVCON, REVIVE,
RDFDAT, ZDNDAT, STATIS and CFGMIN. These respectively contain: a dump file of atomic
coordinates, velocities and forces; a summary of the simulation; the restart configuration; statistics
accumulators; radial distribution data, Z-density data, a statistical history, and the configuration
with the lowest configurational energy. Some of these files are optional and appear only when
certain options are used.

Note: In addition to the files described in this chapter, users of the hyperdynamics features of
DL POLY Classic should see Chapter 6, where additional files specific to that purpose are described.
Similarly, the output files specific to the solvation features of DL POLY Classic are described in
Chapter 5. The output files specific to the path integral (PIMD) option are described in Chapter
8.

4.2.1 The HISTORY File

The HISTORY file is the dump file of atomic coordinates, velocities and forces. Its principal use
is for off-line analysis. The file is written by the subroutines traject or traject u. The control
variables for this file are ltraj, nstraj, istraj and keytrj which are created internally, based
on information read from the traj directive in the CONTROL file (see above). The HISTORY file
will be created only if the directive traj appears in the CONTROL file. Note that the HISTORY file
can be written in either a formatted or unformatted version. We describe each of these separately
below. If you want your HISTORY data to have maximum numerical precision, you should use the
unformatted version.

The HISTORY file can become very large, especially if it is formatted. For serious simulation
work it is recommended that the file be written to a scratch disk capable of accommodating a large
data file. Alternatively the file may be written as unformatted (see below), which has the additional
advantage of speed. However, writing an unformatted file has the disadvantage that the file may
not be readable except by the machine on which it was created. This is particularly important if
graphical processing of the data is required.

4.2.1.1 The Formatted HISTORY File

The formatted HISTORY file is written by the subroutine traject and has the following structure.

record 1 (a80)
header a80 file header

record 2 (3i10)
keytrj integer trajectory key (see table 4.3)
imcon integer periodic boundary key (see table 4.6)
natms integer number of atoms in simulation cell

For timesteps greater than nstraj the HISTORY file is appended at intervals specified by the
traj directive in the CONTROL file, with the following information for each configuration:

record i (a8,4i10,f12.6)
timestep a8 the character string “timestep”
nstep integer the current time-step
natms integer number of atoms in configuration
keytrj integer trajectory key (again)

127

c⃝STFC Section 4.2

imcon integer periodic boundary key (again)
tstep real integration timestep

record ii (3g12.4) for imcon > 0
cell(1) real x component of a cell vector
cell(2) real y component of a cell vector
cell(3) real z component of a cell vector

record iii (3g12.4) for imcon > 0
cell(4) real x component of b cell vector
cell(5) real y component of b cell vector
cell(6) real z component of b cell vector

record iv (3g12.4) for imcon > 0
cell(7) real x component of c cell vector
cell(8) real y component of c cell vector
cell(9) real z component of c cell vector

This is followed by the configuration for the current timestep. i.e. for each atom in the system the
following data are included:

record a (a8,i10,2f12.6)
atmnam a8 atomic label
iatm i10 atom index
weight f12.6 atomic mass (a.m.u.)
charge f12.6 atomic charge (e)

record b (3e12.4)
xxx real x coordinate
yyy real y coordinate
zzz real z coordinate

record c (3e12.4) only for keytrj > 0
vxx real x component of velocity
vyy real y component of velocity
vzz real z component of velocity

record d (3e12.4) only for keytrj > 1
fxx real x component of force
fyy real y component of force
fzz real z component of force

Thus the data for each atom is a minimum of two records and a maximum of 4.

4.2.1.2 The Unformatted HISTORY File

The unformatted HISTORY file is written by the subroutine traject u and has the following
structure:

record 1
header configuration name (character*80)

record 2
natms number of atoms in the configuration (real*8)

record 3
atname(1,...,natms) atom names or symbols (character*8)

128

c⃝STFC Section 4.2

record 4
weight(1,...,natms) atomic masses (real*8)

record 5
charge(1,...,natms) atomic charges (real*8)

For time-steps greater than nstraj, the HISTORY file is appended, at intervals specified by
the traj directive in the CONTROL file, with the following information:

record i
nstep the current time-step (real*8)
natms number of atoms in configuration (real*8)
keytrj trajectory key (real*8)
imcon image convention key (real*8)
tstep integration timestep (real*8)

record ii for imcon > 0
cell(1,...,9) a, b and c cell vectors (real*8)

record iii
xxx(1,...,natms) atomic x-coordinates (real*8)

record iv
yyy(1,...,natms) atomic y-coordinates (real*8)

record v
zzz(1,...,natms) atomic z-coordinates (real*8)

record vi only for keytrj> 0
vxx(1,...,natms) atomic velocities x-component (real*8)

record vii only for keytrj> 0
vyy(1,...,natms) atomic velocities y-component (real*8)

record viii only for keytrj> 0
vzz(1,...,natms) atomic velocities z-component (real*8)

record ix only for keytrj> 1
fxx(1,...,natms) atomic forces x-component (real*8)

record x only for keytrj> 1
fyy(1,...,natms) atomic forces y-component (real*8)

record xi only for keytrj> 1
fzz(1,...,natms) atomic forces z-component (real*8)

Note the implied conversion of integer variables to real on record i.

4.2.2 The OUTPUT File

The job output consists of 7 sections: Header; Simulation control specifications; Force field spec-
ification; Summary of the initial configuration; Simulation progress; Summary of statistical data;
Sample of the final configuration; and Radial distribution functions. These sections are written by
different subroutines at various stages of a job. Creation of the OUTPUT file always results from
running DL POLY Classic. It is meant to be a human readable file, destined for hardcopy output.

4.2.2.1 Header

Gives the DL POLY Classic version number, the number of processors used and a title for the job
as given in the header line of the input file CONTROL. This part of the file is written from the
subroutines dlpoly and simdef

129

c⃝STFC Section 4.2

4.2.2.2 Simulation Control Specifications

Echoes the input from the CONTROL file. Some variables may be reset if illegal values were
specified in the CONTROL file. This part of the file is written from the subroutine simdef.

4.2.2.3 Force Field Specification

Echoes the FIELD file. A warning line will be printed if the system is not electrically neutral. This
warning will appear immediately before the non-bonded short-range potential specifications. This
part of the file is written from the subroutine sysdef.

4.2.2.4 Summary of the Initial Configuration

This part of the file is written from the subroutine sysgen. It states the periodic boundary speci-
fication, the cell vectors and volume (if appropriate) and the initial configuration of (a maximum
of) 20 atoms in the system. The configuration information given is based on the value of levcfg
in the CONFIG file. If levcfg is 0 (or 1) positions (and velocities) of the 20 atoms are listed. If
levcfg is 2 forces are also written out.

For periodic systems this is followed by the long range corrections to the energy and pressure.

4.2.2.5 Simulation Progress

This part of the file is written by the DL POLY Classic root segment dlpoly. The header line is
printed at the top of each page as:

--

step eng_tot temp_tot eng_cfg eng_vdw eng_cou eng_bnd eng_ang eng_dih eng_tet

time eng_pv temp_rot vir_cfg vir_vdw vir_cou vir_bnd vir_ang vir_con vir_tet

cpu time volume temp_shl eng_shl vir_shl alpha beta gamma vir_pmf press

--

The labels refer to :

line 1
step MD step number
eng tot total internal energy of the system
temp tot system temperature
eng cfg configurational energy of the system
eng vdw configurational energy due to short-range potentials
eng cou configurational energy due to electrostatic potential
eng bnd configurational energy due to chemical bond potentials
eng ang configurational energy due to valence angle and three-body potentials
eng dih configurational energy due to dihedral inversion and four-body potentials
eng tet configurational energy due to tethering potentials

line 2
time elapsed simulation time (fs,ps,ns) since the beginning of the job
eng pv enthalpy of system
temp rot rotational temperature
vir cfg total configurational contribution to the virial
vir vdw short range potential contribution to the virial
vir cou electrostatic potential contribution to the virial

130

c⃝STFC Section 4.2

vir bnd chemical bond contribution to the virial
vir ang angular and three body potentials contribution to the virial
vir con constraint bond contribution to the virial
vir tet tethering potential contribution to the virial

Note: The total internal energy of the system (variable tot energy) includes all contributions
to the energy (including system extensions due to thermostats etc.) It is nominally the conserved
variable of the system, and is not to be confused with conventional system energy, which is a sum
of the kinetic and configuration energies.

In cases where the PIMD option is active, and additional data line appears :

line 4
eng qpi energy of the quantum system (standard energy estimator)
eng qvr energy of the quantum system (virial energy estimator)
eng rng energy contribution due to the quantum rings
vir rng virial contribution due to the quantum rings
qms rgr mean-square radius of gyration of the quantum rings
qms bnd mean-square bondlength of the quantum rings
eng the total energy of the quantum ring thermostats

The interval for printing out these data is determined by the directive print in the CON-
TROL file. At each time-step that printout is requested the instantaneous values of the above
statistical variables are given in the appropriate columns. Immediately below these three lines of
output the rolling averages of the same variables are also given. The maximum number of time-
steps used to calculate the rolling averages is determined by the parameter mxstak defined in the
setup module./f file. The working number of time-steps for rolling averages is controlled by the
directive stack in file CONTROL (see above). The default value is mxstak.

Energy Units: The energy unit for the data appearing in the OUTPUT is defined by the units
directive appearing in the CONTROL file.

Pressure units: The unit of pressure is k atm, irrespective of what energy unit is chosen.

4.2.2.6 Summary of Statistical Data

This portion of the OUTPUT file is written from the subroutine result. The number of time-steps
used in the collection of statistics is given. Then the averages over the production portion of the
run are given for the variables described in the previous section. The root mean square variation in
these variables follow on the next two lines. The energy and pressure units are as for the preceeding
section.

Also provided in this section is an estimate of the diffusion coefficient for the different species
in the simulation, which is determined from a single time origin and is therefore very approximate.
Accurate determinations of the diffusion coefficients can be obtained using the msd utility program,
which processes the HISTORY file (see chapter 10).

If an NPT or NσT simulation is performed the OUTPUT file also provides the mean stress
(pressure) tensor and mean simulation cell vectors.

Since version 1.10 of DL POLY Classic this section also includes a record of the even gaussian
moments of the momentum (up to moment 10) expressed the ratio of the simulated and theoretical

131

c⃝STFC Section 4.2

values (see equation 8.28). These are intended to show the degree to which the simulation distribu-
tion function is properly represented as a Gaussian function i.e. that it complies with Boltzmann’s
distribution. It is importnat to note however, that the underlying theory of this is valid only for
atoms undergoing unrestricted motion; atoms that are linked by constraint bonds or are embedded
in rigid bodies will not behave in the right way for this test to be valid.

4.2.2.7 Sample of Final Configuration

The positions, velocities and forces of the 20 atoms used for the sample of the initial configuration
(see above) are given. This is written by the subroutine result.

4.2.2.8 Radial Distribution Functions

If both calculation and printing of radial distribution functions have been requested (by selecting
directives rdf and print rdf in the CONTROL file) radial distribution functions are printed out.
This is written from the subroutine rdf1. First the number of time-steps used for the collection
of the histograms is stated. Then each function is given in turn. For each function a header line
states the atom types (‘a’ and ‘b’) represented by the function. Then r, g(r) and n(r) are given in
tabular form. Output is given from 2 entries before the first non-zero entry in the g(r) histogram.
n(r) is the average number of atoms of type ‘b’ within a sphere of radius r around an atom of type
‘a’. Note that a readable version of these data is provided by the RDFDAT file (below).

4.2.2.9 Z Density Profile

If both calculation and printing of Z density profiles has been requested (by selecting directives
zden and print rdf in the CONTROL file Z density profiles are printed out as the last part of the
OUTPUT file. This is written by the subroutine zden1. First the number of time-steps used for
the collection of the histograms is stated. Then each function is given in turn. For each function a
header line states the atom type represented by the function. Then z, ρ(z) and n(z) are given in
tabular form. Output is given from Z = [−L/2, L/2] where L is the length of the MD cell in the
Z direction and ρ(z) is the mean number density. n(z) is the running integral from −L/2 to z of
(xy cell area)ρ(s)ds. Note that a readable version of these data is provided by the ZDNDAT file
(below).

4.2.3 The REVCON File

This file is formatted and written by the subroutine revive. REVCON is the restart configuration
file. The file is written every ndump time steps in case of a system crash during execution and at the
termination of the job. A successful run of DL POLY Classic will always produce a REVCON file,
but a failed job may not produce the file if an insufficient number of timesteps have elapsed. ndump is
a parameter defined in the setup module.f file found in the source directory of DL POLY Classic.
Changing ndump necessitates recompiling DL POLY Classic.

REVCON is identical in format to the CONFIG input file (see section 4.1.2).
REVCON should be renamed CONFIG to continue a simulation from one job to the next. This

is done for you by the copy macro supplied in the execute directory of DL POLY Classic.

4.2.4 The CFGMIN File

The CFGMIN file only appears if the user has selected the programmed minimisation option (di-
rective minim in the CONTROL file). Its contents have the same format as the CONFIG file (see
section 4.1.2), but contains only atomic position data and will never contain either velocity or force

132

c⃝STFC Section 4.2

data (i.e. parameter levcfg is always zero). In addition, two extra numbers appear on the end of
the second line of the file:

1. an integer indicating the number of minimisation cycles required to obtain the structure
(format I10);

2. the configuration energy of the final structure expressed in DL POLY units 1.3.10 (format
F20).

4.2.5 The REVIVE File

This file is unformatted and written by the subroutine revive. It contains the accumulated statis-
tical data. It is updated whenever the file REVCON is updated (see previous section). REVIVE
should be renamed REVOLD to continue a simulation from one job to the next. This is done by
the copy macro supplied in the execute directory of DL POLY Classic. In addition, to continue a
simulation from a previous job the restart keyword must be included in the CONTROL file.

The format of the REVIVE file is identical to the REVOLD file described in section 4.1.4.

4.2.6 The RDFDAT File

This is a formatted file containing em Radial Distribution Function (RDF) data. Its contents are
as follows:

record 1
cfgname character (A80) configuration name

record 2
ntpvdw integer (i10) number of RDFs in file
mxrdf integer (i10) number of data points in each RDF

There follow the data for each individual RDF i.e. ntpvdw times. The data supplied are as
follows:

first record
atname 1 character (A8) first atom name
atname 2 character (A8) second atom name

following records (mxrdf records)
radius real (e14) interatomic distance (A)
g(r) real (e14) RDF at given radius.

Note the RDFDAT file is optional and appears when the print rdf option is specified in the
CONTROL file.

4.2.7 The ZDNDAT File

This is a formatted file containing the Z-density data. Its contents are as follows:

record 1
cfgname character (A80) configuration name

record 2
mxrdf integer (i10) number of data points in the Z-density function

133

c⃝STFC Section 4.2

following records (mxrdf records)
z real (e14) distance in z direction (A)
ρ(z) real (e14) Z-density at given height z

Note the ZDNDAT file is optional and appears when the print rdf option is specified in the
CONTROL file.

4.2.8 The STATIS File

The file is formatted, with integers as “i10” and reals as “e14.6”. It is written by the subroutine
static. It consists of two header records followed by many data records of statistical data.

record 1
cfgname character configuration name

record 2
string character energy units

Data records
Subsequent lines contain the instantaneous values of statistical variables dumped from the array
stpval. A specified number of entries of stpval are written in the format “(1p,5e14.6)”. The
number of array elements required (determined by the parameter mxnstk in the dl params.inc
file) is

mxnstk ≥ 27 + ntpatm(number of unique atomic sites)

+9(if stress tensor calculated)

+9(if constant pressure simulation requested)

The STATIS file is appended at intervals determined by the stats directive in the CONTROL
file. The energy unit is as specified in the CONTROL file with the the units directive, and are
compatible with the data appearing in the OUTPUT file. The contents of the appended information
is:

record i
nstep integer current MD time-step
time real elapsed simulation time = nstep×∆t
nument integer number of array elements to follow

record ii stpval(1) – stpval(5)
engcns real total extended system energy

(i.e. the conserved quantity)
temp real system temperature
engcfg real configurational energy
engsrp real VdW/metal/Tersoff energy
engcpe real electrostatic energy

record iii stpval(6) – stpval(10)
engbnd real chemical bond energy
engang real valence angle/3-body potential energy
engdih real dihedral/inversion/four body energy
engtet real tethering energy
enthal real enthalpy (total energy + PV)

134

c⃝STFC Section 4.2

record iv stpval(11) – stpval(15)
tmprot real rotational temperature
vir real total virial
virsrp real VdW/metal/Tersoff virial
vircpe real electrostatic virial
virbnd real bond virial

record v stpval(16) -stpval(20)
virang real valence angle/3-body virial
vircon real constraint virial
virtet real tethering virial
volume real volume
tmpshl real core-shell temperature

record vi stpval(21) -stpval(25)
engshl real core-shell potential energy
virshl real core-shell virial
alpha real MD cell angle α
beta real MD cell angle β
gamma real MD cell angle γ

record vii stpval(26) -stpval(27)
virpmf real Potential of Mean Force virial
press real pressure

the next ntpatm entries
amsd(1) real mean squared displacement of first atom types
amsd(2) real mean squared displacement of second atom types
...
amsd(ntpatm) real mean squared displacement of last atom types

the next 9 entries - if the stress tensor is calculated
stress(1) real xx component of stress tensor
stress(2) real xy component of stress tensor
stress(3) real xz component of stress tensor
stress(4) real yx component of stress tensor
... real ...
stress(9) real zz component of stress tensor

the next 9 entries - if a NPT simulation is undertaken
cell(1) real x component of a cell vector
cell(2) real y component of a cell vector
cell(3) real z component of a cell vector
cell(4) real x component of b cell vector
... real ...
cell(9) real z component of c cell vector

135

Chapter 5

Solvation

136

c⃝STFC Section 5.0

Scope of Chapter

This chapter describes the features within DL POLY Classic relevant to the subject of solvation.
The main features are: decomposing the system configuration energy into its molecular components;
free energy calculations by thermodynamic integration; and the calculation of solvent induced
spectral shifts. Some of these features are sufficently general to have applications in other areas
besides solutions.

137

c⃝STFC Section 5.2

5.1 Overview and Background

This chapter is about the features within DL POLY Classic for studying solutions. These include
decomposing the system configuration energy into various molecular components, calculating free
energies by the method of thermodynamic integration, and calculating solvent induced spectral
shifts. Despite the focus on solutions however, some of these features are applicable in other
scientific areas. In particular the energy decomposition can be employed in any system of mixed
species and the free energy feature can be used for other systems where a free energy difference is
required.

A DL POLY Classic module solvation module.f has been devised for these purposes. It was
developed in a collaboration between Daresbury Laboratory and the Institut Pluridisciplinaire de
Recherche sur l’Environment et les Materiaux (IPREM), at the University of Pau. The collaborators
included Ross Brown, Patrice Bordat and Pierre-Andre Cazade at Pau and Bill Smith at Daresbury.
The bulk of the software development was done by Pierre-Andre Cazade and was extended and
adaptated for general DL POLY distribution by Bill Smith.

5.2 DL POLY Energy Decomposition

5.2.1 Overview

In DL POLY Classic the energy decomposition capability breaks down the system configuration
energy into its contributions from the constituent molecular types. What consitutes a molecule in
this context is what is defined as such in the DL POLY Classic FIELD file (see section 4.1.3). It is
not essential that all the atoms in the molecular definition be linked together by chemical bonds.
Nor is it essential for all identical molecules to be declared as one molecular type. Groups of like
molecules or individual molecules can be separated out if there is a compelling reason to do so. It
is not however possible to split molecules that are linked by chemical bonds into sub-molecules for
this purpose.

The configuration energy decomposition available in DL POLY Classic can be summarised as
follows.

1. For each unique molecular type in the system (A, B, C etc) the program will calculate:

• the net bond energy;

• the net valence angle energy;

• the net dihedral angle energy;

• the net inversion angle energy; and

• the net atomic polarisation energy.

These are the so-called intramolecular interactions, while those below are considered to be
intermolecular.

2. For each unique pair of molecular types in the system (AA, AB, AC, BB, BC, CC etc)
the program will calculate:

• the net coulombic energy; and

• the net Van der Waals energy.

3. For each unique triplet of molecular types in the system (AAA, AAB, AAC, ABB, ABC,
ACC etc) the program will calculate:

138

c⃝STFC Section 5.2

• the net three-body angle energy.

4. For each unique quartet of molecular types in the system (AAAA, AAAB, AAAC, AABB,
AABC, AACC etc) the program will calculate:

• the net four-body angle energy.

These are calculated at user-specified intervals in the simulation from a chosen starting point
and written to a data file called SOLVAT, which is decribed in section 5.2.3 below. It is not
required that all the above different kinds of interaction are present in the same system. The types
of intramolecular interaction that may be defined in DL POLY Classic are described in section
(2.2). The types of intermolecular terms that can be defined are described in section (2.3) and the
Coulombic methods available are described in section (2.4).

Note that all the interaction types that are classed as intermolecular above may occur as in-
tramolecular interactions if the molecule concerned is defined as including them. Nevertheless they
are counted as intermolecular terms for the purposes of summation by DL POLY Classic. It should
also be noted that for technical reasons, the program cannot supply the Coulombic decomposition
if the SPME option (section 2.4.7) is selected, but the standard Ewald option is valid for this
purpose. Furthermore, there is no decomposition available for metallic potentials (section 2.3.5) or
the Tersoff potential (section 2.3.3), since these are many-body interactions not readily amenable
to simple decomposition.

5.2.2 Invoking the DL POLY Energy Decomposition Option

The energy decomposition option is activated when the appropriate directive is inserted into the
CONTROL file (section 4.1.1). The directive may be either decompose or solvate, which have
the same effect, though the user’s purpose in invoking each is different. Acceptable abbreviations
of these directives are decomp or solva.

The simplest form of invocation is a single line entry:

decompose n1 n2

or
solvate n1 n2

where the number n1 specifies the time step at which DL POLY Classic is to start calculating
the required data, and n2 is the interval (in time steps) between calculations of the data.

The invocation may also be made in a more informative way:

decompose (or solvate)
start n1
interval n2
enddec (or endsol)

in which start and interval specify the start time step (n1) and time step interval (n2) respectively.
Directives enddec or endsol close the data specification.

5.2.3 The SOLVAT File

The SOLVAT file is a file in which DL POLY Classic writes all the energy decomposition/solvation
data. It is an appendable file and is written to at intervals (defined by the user) during the

139

c⃝STFC Section 5.2

simulation. Restarts of DL POLY Classic will continue to append data to an existing SOLVAT file,
so the user must be careful to ensure that this is what is actually wanted.

Its contents are as follows.

record 1 Format (80a1): The job title, as defined at the top of the CONTROL file.

record 2 Format (40a1): Energy units as defined in the FIELD file header.

record 3 Format (2i10): (natms, mxtmls) - the numbers of atoms and molecule types in system.

record 4 Format (1x,11a4): Information record - labels contents of record 5:
lex lsw bnd ang dih inv shl cou vdw 3bd 4bd.

record 5 Format (11L4): lexcite, lswitch, lcomp(1-9). Logical control variables, where each
indicates the following:
lexcite = .true. - spectroscopic (excited state) calculation (see section 5.4.2);
lswitch = .true. - switching between states for solvent relaxation study (see section 5.4.3);
lcomp(1) = .true. - bond energies are present;
lcomp(2) = .true. - valence angle energies are present;
lcomp(3) = .true. - dihedral angle energies are present;
lcomp(4) = .true. - inversion angle energies are present;
lcomp(5) = .true. - atomic polarisation energies are present;
lcomp(6) = .true. - coulombic energies are present;
lcomp(7) = .true. - van der Waals energies are present;
lcomp(8) = .true. - 3-body energies are present;
lcomp(9) = .true. - 4-body energies are present;

record 6 - end-of-file Format (5e14.6): All subsequent records list the calculated data in in-
dividual blocks for each requested time step. Each block record may consist of any, or all, of the
following data records, depending on the system being simulated (as indicated by record 5). Note
that individual data records may require more than one line of the SOLVAT file since only five real
numbers are presented on each line. In simulations where solvation induced shifts studies are being
performed (i.e. where the control variable lexcite is set .true. - see section (5.4.5)), each of the
data records is duplicated, thus providing data for the ground and excited state systems separately
(see section 5.4.2). In the following mxtmls represents the number of molecule types in the system.

block record 0: species temperatures (mxtmls entries)

block record 1: bond energies (mxtmls entries)

block record 2: valence angle energies (mxtmls entries)

block record 3: dihedral angle energies (mxtmls entries)

block record 4: inversion angle energies (mxtmls entries)

block record 5: atomic polarisation energies (mxtmls entries)

block record 6: coulombic energies ((mxtmls(mxtmls+1))/2 entries)

140

c⃝STFC Section 5.3

block record 7: van der Waals energies ((mxtmls(mxtmls+1))/2 entries)

block record 8: 3-body energies ((mxtmls(2+mxtmls(3+mxtmls)))/6 entries)

block record 9: 4-body energies ((mxtmls(6+mxtmls(11+mxtmls(6+mxtmls))))/24 entries)

It should be noted that writing the 2-, 3- and 4-body energies as a linear stream implies a
certain ordering of molecule pairs (indices i,j), triplets (indices i,j,k) and quartets (indices i,j,k,m).
The appropriate sequence order can be reconstructed from simple nested loops for pair, triple or
quadruple indices subject to the conditions: i≥j for pairs; i≥j≥k for triplets; and i≥j≥k≥m for
quartets, with i as the outermost loop index. For example the following code generates the correct
sequence for a quartet as variable index.

index=0

do i=1,mxtmls

do j=1,i

do k=1,j

do m=1,k

index=index+1

enddo

enddo

enddo

enddo

To assist users with analysis of the SOLVAT file two utility programs are available in the utility
directory. The program solsta.f will calculate the averages and RMS deviations for all the variables
in the file and the program soldis.f will construct the distribution functions of all the variables in
a form suitable for plotting.

5.3 Free Energy by Thermodynamic Integration

5.3.1 Thermodynamic Integration

Thermodynamic Integration (TI) is a well established method for calculating the free energy dif-
ference between two systems defined by distinct Hamiltonians H1 and H2. A ‘mixed’ Hamiltonian
is defined with the aid of a mixing parameter λ, where 0 ≤ λ ≤ 1, as follows:

Hλ = (1− λ)H1 + λH2, (5.1)

so that when λ = 0 the Hamiltonian corresponds to system 1 and when λ = 1 it corresponds
to system 2. Intermediate values λ mix the two systems in different proportions. From such a
Hamiltonian and the relationship between the free energy F and the system partition function it
is easy to show that

dF

dλ
= ⟨H2 −H1⟩λ . (5.2)

From this it follows that if the average of the difference (H2 − H1) is calculated from a series of
simulations over a range of λ values (between 0 and 1), it is possible to integrate this equation
numerically and obtain the free energy difference between systems 1 and 2 i.e.

∆F12 =

∫ 1

0
⟨H2 −H1⟩λ dλ. (5.3)

141

c⃝STFC Section 5.3

Though simple in principle, there are two problems with the basic technique.

1. Firstly, if the mixed Hamiltonian requires the kinetic energy components to be scaled (by
either λ or 1 − λ) the the equations of motion become unstable when λ approaches either
0 or 1. (This is because scaling the kinetic energy components amounts to a rescaling of
the atomic masses, which can thus approach zero at the extremes of λ. Near zero mass
dynamics is not stable for normal time steps.) Fortunately, it is possible in many cases to
set up the Hamiltonians H1 and H2 so that the mixed Hamiltonian does not require scaling
of the kinetic energy. In these cases there is no problem with the equations of motion. For
the awkward cases where the kinetic energy really must be scaled, DL POLY Classic has the
option reset mass, which scales the masses as required. Ideally however, this circumstance
should be avoided if at all possible.

2. Secondly, it is well known that when λ approaches 0 or 1, the average ⟨H2 −H1⟩λ in equation
(5.3) is subject to large statistical error. This arises because the modified dynamics of the
mixed Hamiltonian permits unnaturally close approaches between atoms, and the configura-
tion energy terms arising from this are inevitably extremely large. Fortunately this problem
can be mitigated by the use of a suitable weighting function, examples of which are described
in the following section.

As an example of how this approach maybe used, we present the calculation of the free energy of
a solution of a solute A in a solvent S. An appropriate choice of Hamiltonians for this is

H1 = KS +KA + VSS + VAA + VAS

H2 = KS +KA + VSS + VAA (5.4)

in which KS and KA are the kinetic energies of the solvent and solute respectively, VSS , VAA and
VAS are the interaction energies between solvent-solvent, solute-solute and solute-solvent molecules
respectively. Hamiltonian H1 contains a term (VAS) that causes the solvent and solute to interact,
while H2 has no such interaction. The mixed Hamiltonian in this case is

Hλ = KS +KA + VSS + VAA + (1− λ)VAS . (5.5)

It will be appreciated that when λ is 0, this Hamiltonian represents the solution of A in S, and
when λ is 1, it represents complete independence of the solute and solvent from each other. The
Hamiltonian thus encapsulates the process of solvation. It should also be noted that there is no
scaling of the kinetic energy in this case, so instabilities are not expected in the dynamics when λ
is near 0 or 1.

Following the above prescription we see that in this case

dF

dλ
= ⟨VAS⟩λ . (5.6)

and

∆F12 = −
∫ 1

0
⟨VAS⟩λ dλ. (5.7)

This equation represents the free energy difference between the free solvent and solute and the
solution. The quantity −∆F12 is thus the free energy of solution.

5.3.2 Nonlinear Mixing

As mentioned above, the linear mixing of Hamiltonians represented by equations (5.1) and (5.5)
gives rise to poor statistical convergence of the required averages when λ approaches either 0 or 1.

142

c⃝STFC Section 5.3

One way to reduce the effect this has on the quality of the free energy calculation is to introduce
weighting into the averaging process, so that poor convergence of the averages at the extremes of
λ is of less importance.

This is done by defining a more general form for the mixing as follows

Hλ = (1− f(λ))H1 + f(λ)H2, (5.8)

in which f(λ) is an appropriately designed function of the mixing parameter λ. In this case the
derivative of the free energy with respect to λ is

dF

dλ
=

⟨
(H2 −H1)

df(λ)

dλ

⟩
λ
. (5.9)

As before this equation may be integrated to give the free energy difference as in equation (5.3).
It should now be apparent what desirable properties f(λ) needs to have. Firstly it should be

zero when λ = 0 and unity when λ = 1. Secondly the derivative of the function should approach
zero when λ approaches either 0 or 1, where it will diminish the contribution of the extremes of the
integral to the overall result. With these requirements in mind, DL POLY Classic has a number of
options for the function f(λ).

1. Standard linear mixing:
f(λ) = λ, (5.10)

2. Nonlinear mixing:
f(λ) = 1− (1− λ)k, (5.11)

where k is an integer exponent;

3. Trigonometric mixing:

f(λ) =
1

2
(1 + sin(π(λ− 1

2
))), (5.12)

4. Error function mixing:

f(λ) =
α√
π

∫ λ

0
exp(−α2(x− 1

2
)2)dx, (5.13)

where α is a parameter of order 10 ∼ 11;

5. Polynomial mixing:

f(λ) = 1− (1− λ)k
k−1∑
i=0

(k − 1 + i)!

(k − 1)!i!
λi, (5.14)

where k is an integer exponent.

6. Spline kernel mixing:

f(λ) = 2λ− 8(λ− 1/2)3(1− abs[λ− 1/2])− 1/2, (5.15)

All these functions except (5.10 and 5.11) have the required properties (though not all are equally
effective). Function (5.11) is suitable for mixed Hamiltonians which have only one problematic end
point, such as (5.5), when λ ∼ 1.

143

c⃝STFC Section 5.3

5.3.3 Invoking the DL POLY Free Energy Option

The free energy option using thermodynamic integration is activated by the directive free in the
CONTROL file (section 4.1.1). This is followed by additional directives on the following lines,
terminating with the directive endfre. The invocation is therefore made in the following way:

free
start n1
interval n2
lambda r1

mix n3

expo n4

reset mass - (this is not recommended)
system a i1 i2

system b i3 i4

endfre

The meaning of these directives is as follows.

1. free - invokes the free energy option and marks the start of the free energy specification in
the CONTROL file;

2. start n1 - specifies the time step at which DL POLY Classic should start producing free
energy data (integer n1) ;

3. interval n2 - specifies the time step interval between free energy data calculations (integer
n2);

4. lambda r1 - value of the mixing parameter λ in the Hamiltonian (equation (5.1), range 0-1
(real r1);

5. mix n3 - key for choice of mixing protocol (integer n3), choices are:

• n3=1, linear mixing (equation (5.10));

• n3=2, nonlinear mixing (equation (5.11));

• n3=3, trigonometric mixing (equation (5.12));

• n3=4, error function mixing (equation (5.13));

• n3=5, polynomial mixing (equation (5.14));

• n3=6, spline kernel mixing (equation (5.15));

6. expo n4 - exponent for nonlinear or polynomial mixing, as in equations (5.11)and (5.14)
respectively (required for these options only) (integer n4);

7. reset mass - if this flag is present the Hamiltonian mixing will include the kinetic energy.
The default (obtained by removing this flag) is that there is no mixing of the kinetic energy.

8. system a i1 i2 identifies the range of atom indices that consitute the species A in the
CONFIG file (integer i1,i2);

9. system b i3 i4 identifies the range of atom indices that consitute the species B in the
CONFIG file (integer i3,i4);

10. endfre - closes specification of free energy.

144

c⃝STFC Section 5.4

The invocation of the free energy option means that DL POLY Classic will produce an output
file named FREENG, the contents of which are described in section (5.3.4) below.

Some further comments are in order. Firstly it should be noted that the solute species A and
B, which are specified using directives system a and system b, are identified by specifying the
range of atom indices these components have in the CONFIG file (see section 4.1.2). It is apparent
that this allows the user to specify atoms in the categories of A and B which are not related to
underlying molecular structures. This is a simple way of identifying the distinct components of the
combined system. However there is a clear need for the user to be cautious in defining the system
if ‘strange’ simulations are to be avoided. Also it is apparent that atoms that do not fall under
the categories of A or B will be deemed to be solvent atoms. It is not really sensible to specify all
atoms as either A or B, with no solvent atoms (in category S) at all. In some circumstances A and
B may have atoms in common, in which case these can be be treated as part of the solvent without
affecting their physical properties. It is permissible to have no atoms in category A or category B
if that is required.

5.3.4 The FREENG File

The FREENG file is a formatted in which DL POLY Classic writes all the free energy data re-
quested. It is an appendable file and program restarts will continue to add data to it if it already
exists. The data are written at user-defined intervals during the simulation. The contents of the
file are as follows.

record 1 Format (80a1): The job title, as defined at the top of the CONTROL file.

record 2 Format (40a1): Energy units as defined in the FIELD file header.

record 3 Format (4e16.8) lambda, lambda1, lambda2, dlambda, with

• lambda - Hamiltonian mixing parameter λ (real);

• lambda1 - mixing factor (1− f(λ)) (real);

• lambda2 - mixing factor f(λ) (real);

• dlambda - derivative of lambda1 w.r.t. λ.

record 4 - end-of-file Format (i10,2e16.8) nstep, engcfg, vircfg, where

• nstep - time step of data (integer);

• engcfg - configuration energy difference [V2 − V1] (real);

• vircfg - virial difference [Ψ2 −Ψ1]. (real).

The configuration energy presented in the FREENG file may be averaged over the entire run to
obtain the configuration energy contribution to the average on the right of equation (5.1). The virial
presented there may be used in the calculation of the Gibbs free energy, but it is not needed for
Helmholtz (NVT) free energies. Note that the configuration energy and virial differences include
the factor df(λ)/dλ that appears in equation (5.9). To facilitate the averaging operation the
DL POLY Classic utility directory contains a program fresta.f which calculates the averages of
the potential and kinetic energies and their RMS deviations.

145

c⃝STFC Section 5.4

5.4 Solution Spectroscopy

5.4.1 Spectroscopy and Classical Simulations

Spectroscopy is the study of the absorption of photons by an atomic or molecular species (the
chromophore) to create an excited state and the subsequent de-excitation of the excited state by
photon emission or quenching:

(Absorption) M + hν → M∗

(Emission) M∗ → M + hν (5.16)

(Quenching) M∗ → M

Clearly these are quantum mechanical processes with limited scope for modelling by classical molec-
ular dynamics. However, if certain simplifying assumptions are made, classical simulation can yield
useful information. An example of this is the calculation of solvent induced spectral shifts, in which
a solvent affects a spectroscopic transition (absorption or emission) through broadening the spec-
tral line and shifting its location in the energy spectrum. In this case the simplifying assumptions
are that the spectroscopic transition occurs instantaneously without a change in the structural
conformation of the chromophore (though its interaction with the solvent is expected to change
as a result of the transition). In general classical simulations are concerned with the interactions
between the chromophore and solvent in the ground and excited states.

DL POLY Classic offers two capabilities in this area. Firstly, it can be used to determine the
interaction energy between the solvent and the chromophore in the ground and excited states at the
instant of the transition - information which quantifies the solvent induced spectral shift. Secondly,
it can be used to calculate the relaxation energy resulting from the solvent response to the change
in solvent-chromophore interaction after the transition.

5.4.2 Calculating Solvent Induced Spectral Shifts

A chromophore in solution differs from in vacuum by virtue of the solvent-chromophore interactions
which occur in both the ground and exited states. Since the solvation energy usually different for
the two states, it follows that the spectroscopic transition in solution will be different from the
vacuum to an extent determined by the solvation energy difference. Spectroscopically the effect of
this is to shift the location of the transition in the electromagnetic spectrum. Furthermore, the
solvation energy is not constant, but fluctuates in time with a characteristic probability distribution.
It follows that both the ground and excited states of the chromophore possess a distribution of
possible energies which gives rise to a broadening of the spectral line.

Subject to the assumptions that the transition is instantaneous and that the chromophore
retains the same geometric structure, DL POLY Classic can calculate both of these effects. The
technique is to simulate the chromophore in solution in the ground state at equilibrium and, at
regular intervals, after obtaining the solvation energy of the ground state molecule, replace it
with its excited state (changing its interaction potential with the solvent, but not its molecular
structure) and obtain the interaction energy of the excited state. The replacement is not permanent,
the excited state is used only to probe the solvation energy and has no influence on the system
dynamics. It is a ‘ghost’ molecule. The average of the difference in the solvation energies determines
the spectral shift and the distribution of the energy differences determines the line broadening.

The same procedure may be used to study the emission process. In this case the simulation is
based on an equilibrated solution of the chromophore in the excited state, with replacement by the
ground state chromophore at intervals.

The data produced by this option are written in the SOLVAT file (see section (5.2.3)). The
utility programs solsta.f and soldis.f are useful for analysing these results.

146

c⃝STFC Section 5.4

5.4.3 Solvent Relaxation

Following the absorption of a photon a chromophore may persist in an excited state for an extended
period. This period may be long enough for the solvent to relax around the excited chromophore
and lower the configuration energy to some degree. Subject to the assumption that the chro-
mophore structure does not change during the relaxation period the relaxation energy may be
calculated by simulation. A the same time the relaxation time of the solvent may be estimated. In
DL POLY Classic this is accomplished by switching from the ground to the excited state molecule
at intervals during the simulation, leaving sufficient time for the solvent to relax to equilibrium
around the excited state. At the end of the chosen relaxation interval, the system may be switched
back to the ground state to afford the determination of the relaxation around the ground state. The
relaxation energy may be extracted from the energy difference between the equilibrated ground and
excited state systems and the relaxation time from fitting to the average of many energy relaxation
time plots.

The data from these simulations are written to the SOLVAT file (see section (5.2.3) at the
user-defined intervals.

5.4.4 Invoking the Solvent Induced Spectral Shift Option

This option is activated by inserting the directive excite in the CONTROL file (4.1.1), followed
by further directives to enter the control parameters and ending with the endexc directive. The
specification is as follows.

excite
start n1
inter n2

system a i1 i2

system b i3 i4

endexc

The meaning of these directives is as follows.

1. excite - invokes the solvent induced shift option;

2. start n1 - specifies the time step of the first calculation of the solvation energy of the excited
state (integer n1);

3. inter n2 - the time step interval (sampling interval) between excited state solvation calcula-
tions (integer n2) ;

4. system a i1 i2 identifies the range of atom indices in the CONFIG file that consitute the
chromophore in the first state (integer i1,i2);

5. system b i3 i4 identifies the range of atom indices in the CONFIG file that consitute the
chromophore in the second state (integer i3,i4);

6. endexc - closes specification of solvent induced shift option.

The following additional comments should be noted.
Atoms in the CONFIG file that are not included in the ranges defined by either directive

system a or system b are categorised as solvent atoms. This categorisation has no effect on
their physical properties. Both system a and system b directives specify the atoms of the chro-
mophore, though they represent different states of the chromophore. This of course means the

147

c⃝STFC Section 5.4

chromophore appears twice in the CONFIG file. The atoms specified by system a are consid-
ered to be real atoms and participate fully in the molecular dynamics of the system. The atoms
specified by system b are considered to be virtual and do not affect the dynamics or contribute
to the energy of the system. They are however used to determine the interaction energy of the
chromophore with the solvent in the manner of a virtual probe.

Important: The system b atoms must be the last group of atoms listed in the CONFIG file.
This is absolutely essential. (It will be necessary to restructure the FIELD file if changes are made
to CONFIG.) If the chromophore is only part of a molecule instead of being the whole of it, it will
be found most convenient to let the molecule containing the chromophore be the last one defined
in the CONFIG and FIELD files. This will make it possible to minimise the the number of virtual
atoms it is necessary to define, which reduces the file sizes and improves computational efficiency.

5.4.5 Invoking the Solvent Relaxation Option

This option is activated by inserting the directive switch in the CONTROL file (4.1.1), followed
by further directives to enter the control parameters and ending with the endswi directive. The
specification is as follows.

switch
start n1
inter n2

period n3

system a i1 i2

system b i3 i4

endswi

The meaning of these directives is as follows.

1. switch - invokes the solvent relaxation option;

2. start n1 - specifies the time step at which DL POLY Classic should first switch to the excited
state (integer n1);

3. inter n2 - the time step interval (sampling interval) between spectroscopic data calculations
(integer n2) ;

4. period n3 - the interval in time steps for the system to remain in the excited state before
returning to ground state (where it will remain for an equal interval to re-equilibrate)(integer
n3);

5. system a i1 i2 identifies the range of atom indices in the CONFIG file that consitute the
chromophore in the first state (integer i1,i2);

6. system b i3 i4 identifies the range of atom indices in the CONFIG file that consitute the
chromophore in the second state (integer i3,i4);

7. endswi - closes specification of solvent relaxation option.

See section (5.4.5) for comments on the specification of atoms in system a and system b,
which are equally valid here. Furthermore, when system a and system b atoms are exchanged
under the switch option, the former system a atoms become virtual and system b become real,
until they are swapped over again at intervals defined by the period directive. The data in the
SOLVAT file may be plotted to give a clear representation of the progress of the simulation and
the relaxation of specific components of the solvation energy.

148

Chapter 6

Hyperdynamics

149

c⃝STFC Section 6.0

Scope of Chapter

This chapter describes the facilities within DL POLY Classic for performing accelerated dynamics
(or hyperdynamics) using the Bias Potential Dynamics and Temperature Accelerated Dynamics
methods.

150

c⃝STFC Section 6.1

6.1 Overview of Hyperdynamics

The first thing to note about the hyperdynamics methods in DL POLY Classic is that they were
designed for studies of kinetic processes in the solid state, which mostly means diffusion. In solids
diffusion is characterised by infrequent atomic ‘hops’ occurring on a time scale of order 100 ps to
1000 ps per hop, which is too infrequent to give a measurable diffusion in a normal molecular dy-
namics simulation. Hyperdynamics methods are designed to overcome this problem by accelerating
the hopping frequency.

The hyperdynamics methods built into DL POLY Classic are Bias Potential Dynamics (BPD)
[64] and Temperature Accelerated Dynamics (TAD) [65], both of which were conceived by Voter et
al, though the implementation of BPD in the program uses the bias potential devised by Hamelberg,
Mongan and McCammon [66], which is simpler to use. In passing it is useful to note that BPD
can be used to improve configurational sampling in systems other than solids and this facility has
been retained in the DL POLY Classic implementation (see section 6.3.5).

Figure 6.1: Model Potential Energy Surface.
The potential energy surface of a solid is characterised by deep energy basins, such as Emin,
representing the various structural states. Escape to other states (i.e. diffusion) must go via
‘saddle points’ on the surface indicated by points E1 and E2. The energy differences (E1 − Emin)
or (E2 − Emin) represent the activation energies (E∗) required to enable escape via the respective
saddle points. Thermal excitation alone is insufficient to achieve escape in a reasonable time.

The basic problem in simulating diffusion in solids is that each possible structure of the system
is trapped in a deep basin in the potential energy surface (see figure 6.1) representing a particular
‘state’. For diffusion to occur the system must become sufficiently thermally excited to achieve the
activation energy E∗ necessary to escape. In dimensions higher than 1, E∗ represents a ‘saddle
point’ on the potenial energy surface. Special techniques are required to accelerate the escape
and achieve a measurable diffusion in a reasonable time. These however must be devised so that
the kinetic processes of the original system may be faithfully reconstructed. Both the BPD and
TAD methods in DL POLY Classic, which are respectively described in sections 6.3 and 6.4 below,
satisfy this requirement.

It is apparent from the discussion above that an important requirement in hyperdynamics

151

c⃝STFC Section 6.2

is the calculation of the activation energy, which is equivalent to determining the saddle point
between two states. This is accomplished in DL POLY Classic by a technique known as the ‘Nudged
Elastic Band’ (NEB) method. Understanding the NEB method is a prerequisite for using the
DL POLY Classic hyperdynamics methods correctly, so a description of it is given in the following
section.

6.2 The Nudged Elastic Band Calculation

Figure 6.2: Basic NEB Theory
Plot of bead configuration energy vs. reaction path for a NEB calculation of a structural transition
in a Lennard Jones solid.

The ‘Nudged Elastic Band’ (NEB) method is a standard method for determining the energy
optimised pathway between two known structures. In DL POLY Classic it is used to find the
escape pathway (also called the ‘reaction path’) between structural basins, yielding the activation
energy in the process. The implementation is based on the method described by Henkelman and
Jonsson[67] though it has been adapted to work in parallel. The method is as follows.

1. The start and end points of the NEB construction are the energy minimised structures for
states A and B. (A structure (RN) is defined as the set of 3N coordinates locating all N
atoms in the system.)

2. A series of states is constructed by linear interpolation between the structures of states A
and B i.e. a series of configurations RN

i is generated with i = 0, . . . , Nneb such that i = 0
indicates state A and i = Nneb indicates state B and

RN
i = RN

0 + (i/Nneb) ∗ (RN
Nneb
−RN

0) (6.1)

For convenience these configurations are called the ‘beads’ of the NEB ‘chain’. Each bead
has a configuration energy which may be written as Vc(R

N
i). This is the usual configuration

energy for a system with an atomic structure RN
i .

3. Each bead in the NEB chain is then connected to its two nearest neighbours by a harmonic
spring (except for the end beads which have only one neighbour each), so that the beads

152

c⃝STFC Section 6.3

make a chain strung from state A to state B. The spring energy of the whole chain is then
defined as

Vs(R
N
Nneb

) =
1

2
kneb

Nneb∑
i=1

(RN
i −RN

i−1)
2 (6.2)

where kneb is the spring force constant.

4. With the chain thus defined, the objective is now to minimise the energy function E(RN
Nneb

)
where

E(RN
Nneb

) = Vs(R
N
Nneb

) +
Nneb−1∑
i=1

Vc(R
N
i) (6.3)

in which the adjustable variables are the configurations RN
i (i.e. the atomic coordinates in

each structure), while the chain end beads at RN
0 and RN

Nneb
remain fixed.

5. It is clear that the unconstrained configurations RN
i would normally relax into the nearest

local minimum, but that this cannot happen if they are sufficiently constrained by the har-
monic springs (i.e. kneb is strong enough). Thus the minimisation of the chain will tend to
locate each bead in a position along a path between states A and B like a stretched necklace,
which approximates the minimum energy path between the two states.

6. In practice this simple idea needs refining (or ‘nudging’). Thus care is taken to ensure that
the springs forces acting on the beads and the forces optimising bead configurations are
approximately orthogonal. This means that the atomic forces are zeroed in directions parallel
to the path of the chain and the spring forces are zeroed in directions normal to the chain.
The method of Henkelman and Jonsson [67] is designed to achieve this.

7. If the NEB optimisation works correctly, the result will be that beads are evenly spaced
along the minimum energy path (see figure 6.2). Then by fitting the energies of the beads as
a function of the distance along the path, the maximum energy (i.e. E∗) along the path may
be obtained. The DL POLY Classic NEB routine does this fit using third order splines.

6.3 Bias Potential Dynamics

6.3.1 Theory of Bias Potential Dynamics

BPD works on the simple principle that the addition of a suitable potential term to original system
potential can have the effect of reducing the depth of the potential basin (see figure 6.3) so assisting
escape to neighbouring states. The biased system potential (Vbias(R

N)) is thus given by

Vbias(R
N) = V (RN) +Wbias(R

N) (6.4)

where V (RN) is the original system potential and Wbias(R
N) is the bias potential. Voter [64]

has shown that using a bias potential accelerates the diffusion rate constant kTST (as defined by
Transition State Theory) by a boost factor:

kTST
bias =

⟨
eβWbias(R

N
)
⟩
bias

kTST (6.5)

where β = 1/kBT and the ensemble average, which is calculated in the biased system, represents
the boost factor.

However this simple accelerative factor alone is not sufficient if a faithful description of the dif-
fusion path in the original system is required. Voter [64] showed that to recover the true diffusional

153

c⃝STFC Section 6.3

Figure 6.3: Basic BPD Theory
The normal potential energy surface (continuous line) is characterised by deep basins such as Emin

from which escape is improbable. The biased potential Vbias (dashed line) reduces the basin depth,
making transitions more likely. To preserve the kinetic pathway of the original system, the bias
potential must be less than the saddle points E1 and E2 and for molecular dynamics purposes
ideally should join continuously to the normal system potential (see text).

path it is important that the bias potential does not affect the structure of the transition state
(i.e. the saddle points for the system potential energy surface). If this is the case then the relative
rate constants for escape from a given structure (or state) to any other neighbouring state remains
constant i.e. for transitions from state A to state B or state C:

kTST
Ab→B

kTST
Ab→C

=
kTST
A→B

kTST
A→C

(6.6)

where Ab represents state A simulated with the bias potential present. With this condition satisfied
for all possible transitions a simulation will reproduce the diffusional path obtained in the original
system, but at an accelerated rate.

An early difficulty with BPD was defining the bias potential. However a particularly convenient
form has been devised by Hamelberg et al [66] which has the form

Wbias(R
N) = H(Ebias − V (RN))

[Ebias − V (RN)]2

[α+ Ebias − V (RN)]
, (6.7)

where α is a constant that controls the curvature of the bias potential (see below). Ebias is a fixed
potential energy level above which the bias potential Wbias(R

N)) becomes zero (and the unbiased
potential is restored). This is controlled byH(x), a Heaviside function, which is zero if the argument
x < 0 and 1 if x > 0. Thus setting Ebias correctly provides a means to preserve the structure of
the saddle points of the original surface. (Note however that the user must determine a safe value
for this.) A value of Ebias set above the value of the activation energy E∗ anywhere on the surface
invalidates Voter’s condition (6.6).

Using the definition of the bias potential (6.7) it is easy to show that the atomic forces in the

154

c⃝STFC Section 6.3

biased system are given by:

f bias
i

= f
i

(
α

α+ Ebias − V (RN)

)2

Ebias > V (RN). (6.8)

When Ebias ≤ V (RN) the atomic forces are the same as for the unbiased system.
The constant α in equation (6.7) plays an important role. If it is set to zero then Vbias(R

N) =
Ebias i.e. the biased system potential (6.4) becomes a flat surface within the basins of the original
potential energy surface. In this case BPD is equivalent to a technique known as “puddle skimming”
[68], which is a viable method for Monte Carlo simulation, but has a disadvantage for molecular
dynamics in that whenever Ebias = V (RN) the atomic forces become discontinuous. For dynamics
a nonzero value of α is therefore always to be preferred. Hamelberg et al provides a workable
prescription for obtaining α in reference [66]. However for DL POLY Classic a different approach
is taken, which is outlined below.

The scheme employed in DL POLY Classic makes use of the fact that the local potential energy
minimum is known at any given instant by virtue of the minimisation operations that occur period-
ically in the course of the simulations. (These are necessary to check for any changes in structure.)
This minimum (called hereafter V0) is used to define the effective zero point of the configurational
energy scale, which allows Ebias to be conveniently defined in terms of a temperature Tbias, such
that

(Ebias − V0) =
3

2
NkBTbias (6.9)

This representation has the advantage that it can be intuitively related to the energetics of the
system without prior knowledge of where the system resides on the absolute energy scale. One can,
for example, experiment with gradual increases in Tbias until transitions occur at a reasonable rate.

In a similar way an energy Vmin, with an associated temperature Tmin, can also be defined with
respect to V0, such that Vmin represents the actual minimum of the biased potential Vbias(R

N)
(equation 6.7). It can easily be shown that the minima of both Vbias(R

N) and V (RN) occur at the
same position RN and this gives rise to the following expression for the constant α

α =
(Ebias − V0)(Ebias − Vmin)

(Vmin − V0)
=

3NkBTbias(Tbias − Tmin)

2Tmin
. (6.10)

Under this scheme the user has easy control of the depth of the biased potential Vbias(R
N), to

any depth between Ebias and V0. Note that it does not matter if the system moves to a different
potential basin (and hence adopts a different value of V0), Tbias and Tmin will be at the same heights
above the minimum of the new basin. In this sense the the scheme outlined is adaptive with respect
to the true energy surface.

As with the original scheme of Hamelberg et al [66] this prescription gives a system bias potential
(6.4) which is everywhere differentiable (with continuous forces) and usefully retains some semblance
of the topology of the original potential energy surface. The user is at liberty to chose any value
Ebias > V0, which is useful for configurational sampling, but for hyperdynamics satisfying the
Voter condition (6.6) Ebias must not exceed the system configuration energy at any saddle point
representing an escape route from a potential basin.

Finally it should be noted that simulations performed under the influence of a bias potential
naturally do not return system averages corresponding to the thermodynamic state of the original
system at the specified temperature and pressure. The calculation of the true thermodynamic
averages requires a correction in the form of a weighted average [66]. The true thermodynamic
average < A > of a property A is thus given by

< A >=
< AeβWbias(R

N
) >bias

< eβWbias(R
N
) >bias

(6.11)

155

c⃝STFC Section 6.3

Where the ensemble averages are obtained in the biased system. In practice, if the system visits
many basins in the course of the simulation (i.e. passes through many states), it is not always
sensible to compute such averages over the run. DL POLY Classic only does this when using BPD
to explore configuration space (see below, section 6.3.5), in which case V0 is defined to be the first
minimum visted in the simulation.

6.3.2 Running a BPD Simulation

Two ways of running bias potential dynamics are available in DL POLY Classic. The first is
referred to as “Full Path Kinetics” since it attempts to reproduce a full description of the diffusion
path with the associated activation energies. This is described in section 6.3.3. (A variation
of Full Path Kinetics allows the user to bypass the Nudged Elastic Band calculations, which is
useful in circumstances where the NEB has problems.) The second is “configurational sampling”,
which exploits BPD to explore the range of structural states available to a system, which need not
necessarily be in the solid state. It may also be used to improve thermodynamic averaging of a
system at a given temperature, where equilibration is problematical due to long time scales. This
is described in section 6.3.5.

6.3.3 Full Path Kinetics

This option is intended to determine the true diffusional path that a solid state system follows
at a given temperature, but at an accelerated rate. Each time the system transforms from one
structure to another (i.e. from one state to another) the program records the states it encounters
and (optionally) calculates the activation energy E∗ associated with the transition and extrapolates
to the time at which the transition would have occured in the unbiased system. This information
may subsequently be used to determine the full kinetics of the system.

The method in outline is as follows.

1. The first operation of the program is to construct a reference state for the structure by energy
minimisation. The simulation then proceeds with the biased potential option in much the
same manner as a normal simulation, but during which a running estimate of the boost factor
(in equation (6.5)) is computed.

2. At user defined intervals (called here a ‘BPD block’) the simulation is halted and the structure
energy minimised to create new reference structure, which is compared with the original
reference state to determine if a transition has occurred. A transition is deemed to have
occured if one or more atoms are displaced by more than a preset distance (the ‘catch radius’).
If a transition is detected, the program optionally performs a NEB calculation, using the two
reference structures, to find the activation energy (E∗). Note that it is not essential to
calculate an activation energy if one is confident that the bias chosen does not exceed the safe
limit described by Voter (equation 6.6).

3. A determination of the time of the transition is made. In DL POLY Classic the occurrence
time of the transition (tocc) is determined by checking back from the detection of the transition
through past configurations saved at regular intervals (which should be much less than a BPD
block). Each saved configuration is energy minimised and compared with the reference state
structure until the first occurrence of the new state is found. This provides a reasonable
accuracy on the transition time, somewhat better than using the end time of the BPD block
in which the transition occurred. The transition time is then corrected for the boost factor
in equation (6.5).

156

c⃝STFC Section 6.3

4. The new found state becomes the reference state for the next stage of the simulation. If
no transition was detected the original reference state is left in place. In both cases the
simulation continues from the end of the block as if uninterrupted. (Note this is markedly
different from the TAD procedure described in section 6.4.)

5. The simulation is continued until, from inspection, it apparent that all significant kinds of
transition have been observed. When this is is anybody’s guess, but clearly some knowledge
of the system, gained from other sources, it invaluable here.

6. With all the information gathered it should now be possible to determine the full diffusion
process for the original system at the state point chosen.

The recommended procedure for running BPD with DL POLY Classic is as follows.

1. Run a normal (unbiased) simulation of the system at the required state point (temperature
and volume). Make sure the system does not undergo any structural changes that nullify the
validity of the BPD approach (e.g. melting). Keep the REVCON file to use as the starting
CONFIG structure for the BPD simulation.

2. Set up the BPD option in the CONTROL file as follows:

(a) Set the bpd path directive.

(b) Define the energy units for the BPD calculations e.g.
units s
where s is one of eV, kcal, kJ or K, signifying electron volts, kilo calories per mole, kilo
joules per mole or Kelvin, respectively. No units directive means DL POLY internal
units apply. Forces are given in the chosen energy units per Angstrom.

(c) Set the value of the potential bias (Ebias) e.g.
ebias f
where f is the bias energy level in Kelvin.

(d) Set the value of the bias potential minimum (Vmin) e.g.
vmin f
where f is the energy minimum in Kelvin.

(e) If a BPD simulation without NEB calculations is required, set the ‘no NEB’ flag i.e.
noneb

(f) Select which atom type is to be tracked when determining transitions.
target atom name
where atom name is the name of the target atom type. The default, which is selected
when this directive does not appear, is that all atom types are chosen.

(g) Set the size of the simulation BPD block i.e. the number of time steps between structure
optimisations (for transition detection). e.g.
num block 500.

(h) Set the number of configurations between each write of a tracking configuration file.
This should be an integer divisor of the BPD block number. e.g.
num track 10.

(i) Set the ‘catch radius’ i.e. the minimum distance in Angstroms any atommay be displaced
in the minimised structure before it is recorded as a transition e.g.
catch radius 3.0.

157

c⃝STFC Section 6.3

(j) Set the NEB spring constant (in specified energy units per Å2). e.g.
neb spring 1000.0 (for DL POLY units). This parameter is not required if the noneb
flag has been set.

(k) Select a minimisation option. e.g.
keyword tol.
Where keyword is one of force, energy, position and tol is the convergence tolerance.
(The recommended choice is force with a tolerance of 1.0 in DL POLY units.)

(l) Close the BPD definition with the directive
endbpd

3. Set other CONTROL file directives as follow:

(a) Select the restart noscale option if the CONFIG file was pre-equilibrated, otherwise
leave out the restart keyword altogether.

(b) Set the length of the simulation required (steps) and the equilibration period (equil)
(both in time steps). The equilibration can be short or absent if the system was pre-
equilibrated. In which case a useful alternative is to choose one of the NVT algorithms.

(c) In setting the job close time, it is recommended to set the number to at least 500 times
the clock time it takes to do one normal MD time step. This is to prevent the program
running out of time during a structural minimisation. The timing information for this
may be taken from the previous equilibration run.

(d) Set the remaining CONTROL keywords as were defined for the initial equilibration
simulations.

4. Before starting the BPD simulation, use the LINUX ‘mkdir’ command to make the following
empty directories:

• BASINS - to receive any new structures found;

• TRACKS - to store the tracking configurations;

• PROFILES - to store any transition pathways found by NEB calculations.

If the directories BASINS, TRACKS and PROFILES already exist then carefully archive the
data before deleting the contents. These directories should not be emptied if the simulation
is continuing (restarting) and a full history of the kinetics is required. More about these
directories and the files they contain can be found in section 6.5

5. Run the BPD simulation. This will perform a simulation at the state point requested, checking
for structural transitions at the BPD block intervals specified. Each time it finds a structural
transition, it will record the new state, determine the activation energy by the NEB method
(if requested) and the (unbiased) transition time using the boost factor in equation (6.5), and
then continue the simulation.

6. When the simulation ends, proceed as follows.

(a) Check the EVENTS file (see 6.5.0.2) to see if any structural transitions have been ob-
tained. Each event is represented by a single record and transitions are flagged with the
keyword TRA at the start of the record. Use linux ‘grep’ to locate these entries. No
observed transitions indicates that either a longer simulation is necessary, or running
with a higher bias Ebias should be considered.

158

c⃝STFC Section 6.3

(b) Important. If any of the reported transitions has a system activation energy that is
below Ebias (i.e. N ∗ E∗ < Ebias, where N is the number of atoms in the system1)
this represents a violation of the condition in equation (6.6), which means the observed
diffusion path is not a valid representation of the original system. The simulation should
be repeated with a lower value of Ebias.

(c) If the required number of time steps has not been reached, the simulation can be restarted
from the REVCON, REVIVE and HYPRES files (renaming them as CONFIG, REVOLD
and HYPOLD for the purpose), and setting the directive restart (with no qualifier) in
the CONTROL file.

(d) Use the DL POLY Java GUI to plot the system energy and temperature for the whole
of the simulation. Apart from the equilibration period, these should hold their values
within normal thermodynamic fluctuation, even if transitions have occured. If they do
not, the system has probably not been equilibrated adequately to begin with, in which
case the simulation should be started again.

(e) Check that all the new states the program found are present in the BASINS directory.
Examine them using the DL POLY Java GUI. There may be signs of imperfect minimi-
sation (atoms not quite on lattice sites etc) but this is not a problem in this instance.
More accurate NEB calculations can be performed later (see section 6.6) .

(f) Check that the profiles for all the reported transitions have been written in the PRO-
FILES directory. These record the change in configuration energy as a function of
reaction coordinate (or diffusion path). Do not do this if the option noneb was taken!
Plot these using the DL POLY Java GUI. Use the GUI ‘spline’ option to get a better
idea of what the profiles look like. Take special note of any double (or multiple) maxima.
The transition is considered to end at the first minimum in these cases. It follows that
the activation energy for the second peak is not available in this case, but it can be
obtained later by running the NEB facility independently for the states concerned (see
section 6.6).

(g) It is useful to determine which atoms have relocated during a transition. The program
bsncmp.f in the utility directory may be used for this purpose. It is designed to compare
start and end configurations in the BASINS subdirectory and list the atoms that have
changed location.

6.3.4 Things to Be Aware of when Running Full Path Kinetics BPD

1. Choose the ‘catch radius’ carefully, where possible basing it on nearest neighbour distances
obtained from the parent crystal. A consequence of using too large a catch radius is that
transitions that require a short hop in atom positions may be missed during a run. Such
misses make it difficult to reconstruct the reaction path and, in particular, cause any NEB
calculation to crash, since there is no simple path between the reference structures.

2. Note that in a BPD simulation the reference state is replaced whenever a new state is found.
In this respect the reference state ‘follows’ the diffusion path. This is a clear distinction from
TAD.

3. We repeat again the important message that if any of the transitions reported by BPD has
an activation energy that is below the value of the bias term Ebias (i.e. N ∗E∗ < Ebias,) this
represents a violation of the condition in equation (6.6), which means the observed diffusion

1Assuming just one atom undergoes the transition!

159

c⃝STFC Section 6.4

path is not a valid representation of the original system. The simulation should be repeated
with a lower value of Ebias.

6.3.5 Exploring Configurational Space

Running DL POLY Classic under the BPD option is useful for simply exploring configurational
space. This has a number of uses:

1. Equilibration at a given temperature is quicker and thermodynamic averages can be obtained
with greater reliability;

2. It is possible to observe configurations which are difficult to obtain under normal conditions,
perhaps because they are far from the starting state and the system has slow relaxation times.
Such configurations may be important from a mechanistic viewpoint;

3. The trajectory of the system evolves faster, which means that movies of the simulation can
show the motions of the system on a reasonable time scale.

This option is activated in the CONTROL file by using the single-line directive:
bpd dyn f1 f2

where f1 is the value of the required bias (Ebias), f2 is the required value of the operating potential
minimum (< Vmin >) both expressed in Kelvin.

This option runs like a normal DL POLY Classic simulation, except that the system potential
is now the biased potential. Consequently average system properties are calculated using equation
(6.11). (The user should note that the zero point of potential energy (V0) in this case corresponds
to the first energy minimum found in the simulation. It does not change when further minima are
found. This is different from full path dynamics - see above.)

It is recommended that the simulation be run with the traject option activated in the CON-
TROL file so that a HISTORY file is produced. This may be further analysed to reveal conforma-
tional properties or viewed as a movie (with appropriate software).

6.4 Temperature Accelerated Dynamics

6.4.1 Theory of Temperature Accelerated Dynamics

Temperature Accelerated Dynamics (TAD) was devised by Voter et al [65]. Like BPD it is also a
combination of molecular dynamics and Transition State Theory (TST) for first order processes.
TAD works on the principle that while diffusion in the solid state at a low temperature is often
too slow to measure, at a higher temperature it may be many orders of magnitude faster. However
it is normally the case that at different temperatures a system will evolve via different diffusion
pathways. So to exploit the temperature acceleration successfully special care must be taken to
preserve the true mechanistic pathway at the required (low) temperature. This is precisely what
TAD does.

An appropriate model for a first order diffusion process supposes a system trapped in a potential
basin (state A), from which it may escape through thermal excitation to a new state (state B). If
the system is created in state A at time zero, the probablity of it being found in the same state at
a later time t is

P (t)dt = k exp(−kt)dt (6.12)

where P (t) is a probability distribution and k is the first order rate constant. It follows from this
that the mean lifetime (τ) of the system in state A is

τ = 1/k (6.13)

160

c⃝STFC Section 6.4

from which we have a universal property of first order systems

τ k = 1. (6.14)

In other words the rate constant is inversely proportional to the lifetime in the initial state.
According to TST the rate constant exhibits a temperature dependence given by the Arrhenius’

law
k = ν eβE

∗
(6.15)

where ν is the so-called the pre-exponential factor (with the units of frequency) and β is the
Boltzmann factor 1/kBT . E

∗ is the activation energy of the process, which is the energy barrier
between the bottom of the potential basin of state A and the saddle point on the energy surface
that provides the escape route to state B. This equation shows that at different temperatures, T1
and T2, the same escape route from state A has different rate constants, k1 and k2 respectively.
Nevertheless, the universal property of equation 6.14 means that

τ1 k1 = τ2 k2, (6.16)

which is an important relation underpinning the TAD method, showing how the time scale for a
barrier crossing event at one temperature is related to the time scale for the same event at another
temperature.

In most practical systems state A is likely to have more than one escape route (to distinct
states: B, C, D, etc.) each with its own activation energy, pre-exponential factor and temperature-
dependent rate constant. At any given temperature, escape from state A may occur via any
one of these routes, but is most probable via the route which has the highest rate constant and
therefore (by equation 6.16) the lowest associated residence time. A normal molecular dynamics
simulation commencing from state A will undergo a transition to a neighbouring state via the
first encountered route and never sample the alternatives. Since the different routes have different
temperature dependent rates, it follows that at different temperatures, the system may evolve
along completely different paths. The TAD method avoids this possibility at high temperature by
returning the system to state A after every transition, so that practically all of the escape routes at
this temperature may be discovered. From the calculated properties of these escape routes the true
low temperature escape route may be determined by extrapolation. Thus TAD provides a high
temperature method for identifying the transitions that mark out the low temperature diffusion
pathway.

The characteristics of the method are as follows, in which it is assumed that the kinetic prop-
erties of a system at the temperature (Tlow) are required.

1. The starting structure (state A) is energy minimised to provide a reference structure (hereafter
called the reference state) against which later structures may be compared to determine any
structural transitions.

2. The system is simulated at high temperature (Thigh) and halted at regular intervals (called
a ‘TAD block’) to energy minimise the structure to construct a reference state. This is
compared with the existing reference state to determine if a structural transition (to state B)
has occurred. A transition is deemed to have occured if one or more atoms are displaced by
more than a preset distance (the ‘catch radius’). If a transition is detected, a NEB calculation
is initiated, using the two reference structures, to find the activation energy (E∗).

3. Next a determination of the transition time (thighocc) is made. As with BPD the occurrence time
of the transition (thighocc) is determined by checking back from the detection of the transition
through past configurations saved at regular intervals (which are saved at intervals much less

161

c⃝STFC Section 6.4

Figure 6.4: Basic TAD Theory
. Plot of log(1/t) vs. 1/T for the TAD method. Simulations at high temperature locate transitions
indicated as t1 and t2 with t1 occurring first (time increases in a downward direction on this
plot). Extrapolation to low temperature using equation 6.17 shows that these transitions would
have occurred in reverse order. If no other transitions occurred, t2 would be the observed low
temperature transition in an MD simulation. The dotted line indicates a possible hypothetical
transition that just precedes t2 at low temperature. Its high temperature intercept is calculated
according to the criterion of Voter et al. [65] which gives the estimated stopping time for the
simulation.

than a TAD block). Each saved configuration is energy minimised and compared with the
reference state structure until the first occurrence of the new state is found. This provides a
reasonable accuracy on the transition time, somewhat better than using the end time of the
TAD block in which the transition occurred.

4. The time thighocc is extropolated to the corresponding time of occurrence (tlowocc) at Tlow. This is
done by combining equations (6.15) and (6.16) and taking the logarithm:

log

{
tlowocc

thighocc

}
= log

{
khigh

klow

}
= −E

∗

kB

{
1

Thigh
− 1

Tlow

}
. (6.17)

See figure 6.4 for an indication of how the extrapolation works.

5. The system is returned to state A and the simulation recommenced. Returning the system to
its original state means resetting the atomic coordinates to a structure in the starting basin
and resetting the velocities according to a Boltzmann distribution, while retaining the total
system energy of the original state. The simulation is continued to obtain information on
other transitions (to states C, D, E etc) that may occur from state A. This is a key difference
from the BPD method.

6. A determination of the simulation ‘stopping time’ (tstop) is made (see below). When the
simulation reaches the calculated stopping time, it is terminated.

162

c⃝STFC Section 6.4

When the simulation has ended, the transition with the shortest determined occurence time
(tlowocc) at Tlow indicates the state to which the system would have transformed in a molecular
dynamics simulation at that temperature. This new state becomes the starting point for a new
high temperature simulation of the system, exploring transitions from this state to futher new
states. By this procedure, after sufficient sampling of states, the true low temperature evolution of
the system may be determined.

The ‘stopping time’ mentioned above is the time at which the high temperature simulation is
halted. Ideally this is defined with a high probability that no more significant transitions will be
found. This is determined from the history of the TAD simulation itself. Voter et al. provided a
prescription of this [65]. It begins by defining, for a supposed undiscovered escape route, a very
small probability (δ) that after the time tstop the system is still in state A. This probability must
chosen small enough to give confidence that the awaited transition has had sufficient time to occur.
δ may be determined from

δ =

∫ ∞

tstop
k exp(−kt) dt (6.18)

from which it follows that

log

(
1

δ

)
= tstopk. (6.19)

and hence combining this with (6.15):

log

(
1

δ

)
= tstopνmin exp(−E∗

min/kBThigh) (6.20)

where νmin and E∗
min are the prefactor and activation energy respectively of the supposed undis-

covered escape route. Rearranging this gives

Thigh log

(
log(1/δ)

tstopνmin

)
= −E

∗
min

kB
(6.21)

The supposed undiscovered escape route is one which may possesses a low temperature occur-
rence time that is less than the current working minimum (tmin

occ). The right side of (6.21) may be
approximately determined using equation (6.17) if it assumed that the largest observed value of
thighocc is close to tstop and the lowest possible low temperature time is close to tmin

occ (see figure 6.4).
Combining the two equations and rearranging gives

tstop =

(
log(1/δ)

νmin

)(
tmin
occ νmin

log(1/δ)

)Tlow/Thigh

. (6.22)

Voter [65] argues that νmin is commonly of the order 1012 ∼ 1013 s−1 (or 1 ∼ 10 in DL POLY
units) and suggests δ = 0.001 as a working value. These represent practical working values for
approximating tstop.

6.4.2 Running a TAD Simulation

This section describes the procedure for running a TAD simulation. The reader will notice some
resemblance to the BPD procedure described in section 6.3. This is intentional for operational
reasons, but the reader should always be alert to the key differences between the two.

We recommend the following procedure.

1. Run a normal simulation of the system at the (high) temperature (Thigh) needed to perform
the TAD simulation. Make sure the system behaves itself before moving to the next stage

163

c⃝STFC Section 6.4

(and doesn’t melt, for example). Retrieve the REVCON file and rename it as CONFIG for
the TAD run. In principle this equilibration can be skipped and a TAD simulation started
right away (with a suitable equilibration period at the start), but it is probably wiser to do
this stage beforehand and make sure the system behaves properly at this temperature.

2. Set up the TAD simulation using the directives in the CONTROL file as follows:

(a) Set the tad directive followed by records defining the operating conditions:

(b) Define the energy units for the TAD parameters e.g.
units s
where s is one of eV, kcal, kJ or K, signifying electron volts, kilo cals per mole, kilo
joules per mole or Kelvin, respectively. No units directive means DL POLY internal
units apply. Forces are in chosen energy units per Angstrom.

(c) Set the size of the simulation TAD block i.e. the number of time steps between structure
optimisations. e.g.
num block 500.

(d) Set the number of configurations between each write of a tracking configuration file.
This should be an integer divisor of the TAD block number. e.g.
num track 10.

(e) Set the blackout period (in time steps) following a transition detection. e.g.
blackout 200.
A blackout period is intended to stop the program recording transitions that are corre-
lated with a previous one. These are classified as ‘ignored transitions’

(f) Set the ‘catch radius’ i.e. the minimum distance in Angstroms any atommay be displaced
in the minimised structure before it is recorded as a transition e.g.
catch radius 3.0.

(g) Set the NEB spring constant (in specified energy units per Å2). e.g.
neb spring 1000.0 (in DL POLY units).

(h) Set the reliability factor for the high temperature simulation. For input purposes this is
defined as the ratio log(1/δ)/νmin (see above) e.g.
deltad 0.001.

(i) Set the low temperature (Tlow) for the TAD method (i.e. the temperature for which the
results are needed, in Kelvin) e.g.
low temp 30.0.

(j) Select a minimisation option. e.g.
keyword tol.
Where keyword is one of force, energy, position and tol is the convergence tolerance.
(The recommended tolerance for force option is 1.0 in DL POLY units.) e.g.
force 1.0.

(k) Close the TAD definition with the directive
endtad

3. Set other CONTROL file keywords as follow:

(a) The simulation temperature (i.e. the ‘high’ temperature Thigh for the TAD method)
using the temp directive.

(b) Select the restart noscale option if the CONFIG file was pre-equilibrated, otherwise
leave out the restart keyword altogether.

164

c⃝STFC Section 6.4

(c) Set the length of the simulation required (steps) and the equilibration period (equil)
(both in time steps). The equilibration can be short if the system was pre-equilibrated.

(d) In setting the job close time, it is recommended to set the number to at least 500 times
the clock time it takes to do one normal MD time step. This is to prevent the program
running out of time during a structural minimisation. The timing information for this
may be taken from the previous equilibration run.

(e) Set the remaining CONTROL keywords as were defined for the initial equilibration
simulations.

4. Before starting the TAD simulation, use the LINUX ‘mkdir’ command to make the following
empty directories:

• BASINS - to receive any new structures found

• TRACKS - to store the tracking configurations

• PROFILES - to store any transition pathways found by NEB calculation

If the directories BASINS, TRACKS and PROFILES already exist then carefully archive the
data before deleting the contents. Do not empty these directories if continuing (restarting)
the simulation in the original starting basin. The information in these directories is still ‘live’
in this case. Further information on these files can be found in section 6.5.

5. Run the TAD simulation. This will perform a simulation at the (high) temperature requested,
checking for structural transitions at the intervals specified. Each time it finds a structural
transition, it will record the new state, determine the activation energy, transition pathway
and stopping time, then revert back to the starting basin and continue.

6. When the simulation ends, proceed as follows.

(a) Check the EVENTS file (see 6.5.0.2) to see if any structural transitions have been ob-
tained. Each event is represented by a single record and transitions are flagged with
the keyword TRA at the start of the record. Use linux ‘grep’ to locate these entries.
No observed transitions indicates either a longer simulation is necessary, or a higher
temperature simulation should be considered.

(b) Check that the simulation was sufficiently long to guarantee all high temperature tran-
sitions have been found that are compliant with the specified reliability (deltad). The
estimated stop time derived from this factor appears as the last entry of the TRA record
in the EVENTS file.

(c) If the simulation stop time has not been reached, the job must be restarted from the
REVCON, REVIVE and HYPRES files (renaming them as CONFIG, REVOLD and
HYPOLD for the purpose), and continued until the stop time has been reached. After
the simulation finally stops, a new simulation can be started from the basin file obtained
from the earliest (shortest extrapolated time) low temperature transition. See section
6.4.3 for more information on restarting a TAD simulation.

(d) Use the DL POLY Java GUI to plot the system energy and temperature for the whole
of the simulation. Apart from the equilibration period, these should hold their values
within normal thermodynamic fluctuation, even if transitions have occured. If they do
not, the system probably has not been equilibrated adequately to begin with, in which
case start the simulation again. (See sction 6.4.3.)

165

c⃝STFC Section 6.4

(e) Check that all the new states the program found are in the BASINS directory. Note
that there may be fewer new states than the number of transitions observed because
some transitions may end in the same basin more than once, so a new state is not stored
in this case. Examine them using the DL POLY Java GUI. There may be signs of
imperfect minimisation (atoms not quite on lattice sites etc) but this is normal at this
stage. Corrective action can be taken later (see section 6.6).

(f) Check that the profiles for all the reported transitions have been written in the PRO-
FILES directory. These record the change in configuration energy as a function of
reaction coordinate. Plot these using the DL POLY Java GUI. Use the GUI ‘spline’
option to get a better idea of what the profiles look like. Take special note of any double
(or multiple) maxima. The transition is considered to end at the first minimum in these
cases. A basin file for the first intermediate state is written to the BASINS directory.

6.4.3 Restarting a TAD Simulation

It may be necessary to restart a TAD simulation for a number of reasons.

(a) The earliest low temperature transition from the current basin has been found and the
user now wants to investigate transitions from the new basin. This basin corresponds
to that which a molecular dynamics simulation would have reached first at the low tem-
perature. In which case users should save their data from the first study and commence
the simulation from the new basin exactly as in the previous study i.e. renaming the
appropriate basin CFGBSNnn file as CONFIG. Once again an initial equilibration of
the system to high temperature is recommended. This is not strictly a restart of an
unfinished simulation, but the start of a new one which is part of a TAD series.

(b) The previous simulation ended but did not record any transitions. In this case it is
advised to start the simulation afresh, using a higher operating temperature than before.

(c) The previous simulation ended without crashing and recorded some transitions but did
not reach the required stop time. In this case simply restart the program as for a normal
DL POLY continuation run - using the REVCON, REVIVE and HYPRES files (renamed
CONFIG, REVOLD and HYPOLD) and using the unqualified restart directive in the
CONTROL file. (Remember to increase the number of required time steps if necessary.)

(d) The previous simulation crashed. If this means a crash for unknown reasons, then
the situation may be unrecoverable (as with any unexpected DL POLY crash). Try to
locate the problem and fix it. If however the simulation arrived at this end point due
to a time-out error, then there is hope. It may be possible to restart from the last
REVCON, REVIVE HYPRES files, presuming they are uncorrupted and have the same
time stamp. Be aware that such a restart may cause data duplication in other files, such
as STATIS, EVENTS, BASINS, PROFILES and HISTORY, and the user should remove
such a possibility by editing or sometimes even removing the files before restart. The
objective is to remove any entries in these files that occured after the restart files were
written. It is therefore important to determine what was going on when the program
crashed. With TAD it may be found that the time-out error is most likely to happen
during a NEB calculation or a structure optimisation. In which case it will be hard work
deciding what needs to be patched up before continuing, though the time stamp of the
restart files is still the crucial factor. This situation is best avoided in the first place by
giving the code a generous ‘close time’ in the CONTROL file, so that these optimisation
tasks have a chance to complete before the axe falls.

166

c⃝STFC Section 6.5

6.4.4 Things to Be Aware of when Running TAD

1. Choose the ‘catch radius’ carefully, where possible basing it on nearest neighbour distances
obtained form the parent crystal. A consequence of using too large a catch radius is that
transitions that require a short hop in atom positions may be missed during a run. Such
misses make it difficult to reconstruct the reaction path and, in particular, cause the NEB
calculation to crash, since there is no simple path between the reference structures.

2. The user may sometimes observe successive transitions into the same state. If a transition
to an already visited state occurs it is indicated with the flag TRR (repeat transition) in the
EVENTS file (6.5.0.2). Such repeated transitions are normal but if they occur in succession
it implies that there is some correlation creeping into the resetting of the system back into
the starting state. This however is harmless as the accumulated simulation time is reset back
to the restart state after each transition and so does not affect the time of the later transition
to a new state.

3. Note that in a TAD simulation the reference state is always the same. The reference state
does not ‘follow’ the diffusion path as it does in BPD.

4. It is useful to determine which atoms have relocated during a transition. The program
bsncmp.f in the utility directory may be used for this purpose. It is designed to compare start
and end configurations in the BASINS subdirectory and list the atoms that have changed
location.

6.5 DL POLY Classic Hyperdynamics Files

The DL POLY Classic BPD and TAD options generate a (potentially large) number of files in
addition to those normally produced (and described in Chapter 4). Some are sufficient in number
to warrant creation of additional sub-directories of the DL POLY execute sub-directory. These files
are as follows.

1. HYPRES - the hyperdynamics restart file, which stores (unformatted) data to permit contin-
uation of an unfinished BPD or TAD simulation. It is created in the execute sub-directory.
This file becomes the HYPOLD file, which is used in restarting a BPD or TAD simulation.

2. EVENTS - a summary of events that have occurred in the course of a hyperdynamics simu-
lation - one record per event. It is generated in the execute sub-directory.

3. CFGBSNnn - a ‘basin’ file, which contains the coordinates of each distinct state DL POLY Classic
has found during the BPD or TAD run. nn is an integer rising from 0 to 9999. All such files
are generated in the execute/BASINS sub-directory.

4. PROnn.XY - a ‘profile’ file, which is a list of the reaction coordinate and configuration energy
of each bead in the converged NEB calculation. nn is an integer rising from 0 to 9999. All
such files are generated in the execute/PROFILES sub-directory and are plotable XY files.

5. CFGTRAnn - a configuration file used to interpolate when a transition has occured. nn
is an integer rising from 0 to 9999. All such files are generated in the execute/TRACKS
sub-directory.

These files are described in further detail below.

167

c⃝STFC Section 6.5

6.5.0.1 The HYPRES and HYPOLD Files

The HYPRES and HYPOLD files are unformatted (i.e. not human readable) and are restart files
for BPD or TAD runs of DL POLY Classic. The HYPRES file is produced by the program at
regular intervals during the program run and also at the end of a run. It must subequently be
renamed HYPOLD to be read by DL POLY Classic when the simulation is recommenced. The
user does not need to know the contents of these files, but for the curious it can be said that they
contain current file numbers for the BASINS, TRACKS and PROFILES directories; the structural
differences between the current reference basin and any new basins found (TAD only); and the
atomic coordinates of the current basin taken at the last check point (such as the end of the last
BPD orTAD block).

6.5.0.2 The EVENTS File

The EVENTS file is a text file that reports the results of actions taken by the hyperdynamics
routines. Each record in the file specifies a particular kind of event. The possible events described
are as follows. (Note that the real variables specified in this file are in units specified by the user.)

1. Blackout period reset: BLK n1 n2
where

• n1 is the time step at which a blackout period was initiated;

• n2 is time step at which the new blackout period will end.

TAD only.

2. Equilibration period reset: EQL n1 n2
where

• n1 is the time step at which the equilibration period was reset;

• n2 is time step at which the new equilibration period will end.

3. Minimisation completed: MIN n1 n2 n3 n4 r1 r2 r3
where

• n1 is the time step at which the minimisation commenced (integer);

• n2 is number of cycles required by the minimiser to converge (integer);

• n3 is the BPD/TAD block for which the minimisation took place (integer);

• n4 is the optimisation convergence criterion key: 0 for forces, 1 for energy, 2 for position
(integer);

• r1 is the convergence tolerance used by the minimiser (real);

• r2 is the energy of the minimised configuration (real);

• r3 is the the convergence actually achieved by the minimiser (real).

Users should note that a final convergence value (r3) greater than the convergence criterion
(r1) indicates incomplete convergence.

4. Nudged Elastic Band completed: NEB n1 n2 n3 n4 r1 r2
where

• n1 is the time step at which the NEB calculation commenced (integer);

168

c⃝STFC Section 6.5

• n2 is number of cycles required by the NEB calculation to converge (integer);

• n3 is the maximum allowed number of cycles (integer);

• n4 is the number of ‘beads’ in the NEB chain (integer);

• r1 is the energy of the home basin (starting state) configuration (real);

• r2 is the energy of the end basin (new state) configuration (real);

Users should note that when n2 and n3 are equal, this implies that convergence of the NEB
chain has not been achieved. Note also that the characteristics of the reaction path are given
by the subsequent TRA event (below).

5. Transition detected: TRA n1 n2 n3 n4 r1 r2 r3 r4
where

• n1 is the time step at which the transition was first detected (integer);

• n2 is the home basin (starting state) of the transition (integer);

• n3 is the new basin (ending state) of the transition (integer);

• n4 is the number or turning points in the transition profile (integer);

• r1 is the activation energy obtained from the NEB calculation (real);

• r2 is the observed transition time (real);

• r3 is the calculated extrapolated transition time (real);

• r4 is the calculated stopping time (real, TAD only);

Note that iof the user has set the noneb directive in a BPD simulation the entry for the
activation energy is replaced by the bias potential, which sets a lower bound for the activation
energy.

6. Transition ignored: TRI n1
where

• n1 is the time step at which a transition was detected, but ignored because it was during
an equilibration or blackout period (integer).

TAD Only.

7. Transition repeated: TRR n1 n2 n3
where

• n1 is the time step at which a transition was detected, but it was identified as a repeat
and no further analysis was underatken (integer);

• n2 is the identity of the home basin (integer);

• n3 is the identity of the new basin (integer);

TAD Only.

6.5.0.3 The CFGBSNnn Files in the BASINS Directory

A CFGBSNn file is a text file containing the energy minimised structure of a basin found during
the BPD or TAD simulation. The number nn rises from 0 to 9999. Internally the format of the file
is the same as a CONFIG file (see section 4.1.2), though it does not normally contain velocity or
force data.

169

c⃝STFC Section 6.6

6.5.0.4 The CFGTRKnn Files in the TRACKS Directory

The CFGTRKnn files have exactly the same format as the CFGBSNnn files. The files do not
however contain energy minimised structures. These files represent consecutive structures written
at user defined intervals during the simulation. The interval (num track see above) is an integer
divisor of the number of steps in a BPD or TAD block (num block) and the number nn in the file
name is modulomax track, wheremax track=num block/num track. Thus after num block
time steps from the simulation start, there are always max track configurations to search back
over to locate the time of a transition. nn is an integer ranging from 0 to max track.

6.5.0.5 The PROnn.XY Files in the PROFILES Directory

The PROnn.XY files tabulate the converged configuration energies of the beads in a NEB calcula-
tion, as a function of the reaction coordinate linking the beads. nn is an integer ranging from 0 to
9999.

The reaction coordinate is the path distance (Sn) between the structure of the reference state
and the structure of a converged NEB bead and is defined here as:

Sn =
n∑

i=1

[
(RN

i −RN
i−1)

2
]1/2

, (6.23)

where RN
i is a 3N dimensional vector defining the structure (N is the number of atoms) and n

ranges from 2 to bead number Nneb in the NEB chain. Note that the reaction path does not
usually represent a straight line in the 3N dimensional space. The file PROnn.XY presents two
columns of numbers: the first is the reaction coordinate and the second is the configuration energy
of the bead. Both are expressed in DL POLY Classic units. The configuration energy for the first
bead (at Sn = 0) is the energy of the reference state.

Normally the PROnn.XY file reveals a single maximum in configuration energy as the reaction
coordinate increases. However in some instances more than one maximum may be obtained. The
user should note that in these instances DL POLY Classic will take the configuration closest the
first minimum and optimise it independently to define the true destination of the transition from
the reference state.

6.6 Tidying Up the Results of a Hyperdynamics Simulation

6.6.1 Refining the Results

A completed BPD or TAD simulation will provide a number of basin files defining the minima
of new structures discovered, together with the associated profile files describing the energy path
between these structures. These are the data that are needed to reconstruct the diffusion path in
the original system.

However, at this stage there are still some approximations in the results, which arise from the
chosen tolerances in the energy minimisation of the structures and the NEB calculations. To offset
these, the following refinements are recommended.

1. Take each of the basin structures derived from the BPD or TAD simulation and perform a
further structural optimisation with DL POLY, using more exacting convergence tolerance.
For example using a force tolerance of 0.01 (DL POLY units) in place of the recommended 1.0
used in the BPD and TAD procedures. This will provide more accurate reference structures.

170

c⃝STFC Section 6.7

2. Using the accurately minimised structures in place of the original basins, use the NEB option
in DL POLY to recalculate the transition path between the reference states. Once again a
more exacting tolerance may be used, but beware that the NEB calculation may not converge
at all if the tolerance is too exacting. It is far less stable in this respect than the ordinary
structural optimisation. Note that the tolerance for the overall NEB minimisation is set
internally in DL POLY Classic to be a factor of 10 larger than that for the minimisation
alone. The result of these refinements should be a better estimate of the activation energy
and low temperature transition time.

For TAD simulations the activation energy obtained from the refined structures can be used
together with the simulated high temperature transition time to recalculate the low temperature
transition time from equation (6.17). Note this may alter the original low temperature diffusion
path, so be alert to this possibility and change the starting basin for any subsequent simulation.
These refinements have no impact on the BPD simulations other than to improve the quality of
the calculated kinetic properties.

6.6.2 Treatment of Multiple Maxima in the Reaction Path

The NEB calculations that occur while the BPD or TAD simulations are running may sometimes
report a multiple maximum on the reaction path (see theTRA entry for the EVENTS file in section
6.5.0.2). More than two maxima is probably indicative of problems with the NEB convergence and
should be regarded with suspicion, but obtaining two maxima is a real possibility. In such cases
DL POLY Classic stores both the end structure of the NEB chain and the structure corresponding
to the first minimum in the energy profile along the reaction path, but it does not record the
activation energies beyond the first peak.

A BPD simulation requires a complete description of the potential energy surface kinetics so
determination of the second activation energy and the corresponding transition time is essential.
After recording the transition, the subsequent dynamics correctly starts (for BPD) from the final
state of the double transition, but the loss of information is ignored. A NEB calculation is therefore
necessary to determine the lost details.

For TAD objective is to find the escape route for a transition from the starting state and
halting the analysis of the reaction path at the first minimum is sufficient to define the escape. The
intermediate state provides a valid possible basin for further study of the kinetics of the system.
This is sensible if the two peaks on the reaction path are of similar magnitude. However it is
quite possible that the second peak is much higher or much lower than the first. The first of these
possibilities means that choosing the first minimum as the starting basin for a new simulation will
most likely consistently return the system to the original starting state. The second possibility
suggests that the second state on the reaction path is a better option for the next phase of the
study. To decide between these possibilities it is necessary to determine the activation energy of
the second peak. Thus in both BPD and TAD, when a multiple maximum is found on the reaction
path, a NEB calculation is needed to complete the path analysis.

See the following section 6.7 for details.

6.7 Running a Nudged Elastic Band Calculation

Running an independent NEB calculation may be necessary to improve the accuracy of the cal-
culated activation energy, or to determine the activation energy in transitions not fully evaluated
when they occurred in a BPD or TAD simulation - due to the occurrence of a multiple maximum
on the reaction path.

171

c⃝STFC Section 6.7

To run a NEB calculation with DL POLY Classic it is first necessary to identify the start and
end basins among the CFGBSNnn files in the BASINS directory described in section 6.5.0.3. From
the information provided in the EVENTS file (see 6.5.0.2) it should be possible to decide which
files are needed. The user then needs to modify the CONTROL file in the following way.

1. Remove any directives for the bpd or tad options. Directives for the integration algorithm
(integrator) or ensemble (ensemble) should also be removed.

2. The directive for the NEB option should be inserted:
neb n
where n is the number of NEB calculations required.

3. On the record following the neb directive, a list of n starting basins should be given e.g.
basin 1 1 1 1 2 3
Meaning the 5 required NEB calculations start from basin files CFGBSN0001, CFGBSN0001,
CFGBSN0001, CFGBSN0002 and CFGBSN0003. Up to 10 NEB calculations are permitted.

4. On the second record following the neb directive, a list of n final basins should be given e.g.
basin 2 2 3 4 3 4
Meaning the 5 required NEB calculations are between basins 1 - 2, 1 - 3, 1 - 4, 2 - 3 and 3 -
4 in this example.

5. Define the energy units for the BPD parameters e.g.
units s
where s is one of eV, kcal, kJ or K, signifying electron volts, kilo cals per mole, kilo joules
per mole or Kelvin, respectively. No units directive means DL POLY internal units apply.
Forces are in chosen energy units per Angstrom.

6. Next set the NEB spring constant (in specified energy units per Å2). e.g.
neb spring 1000.0 (in DL POLY units).

7. Select a minimisation option. e.g.
keyword tol.
Where keyword is one of force, energy, position and tol is the convergence tolerance.

8. Close the NEB definition with the directive
endneb

6.7.1 Things to be Aware of when Running a NEB Calculation

1. Note that the NEB calculation assumes that the basin files for the start and end states are
in the BASINS directory and that DL POLY Classic is being run from the execute directory,
where the DLPOLY.X executable is located. Needless to say, if these files are placed anywhere
else, the calculation will fail.

2. Note also that the NEB calculation places the reaction path profile for a given pair of states
in the PROFILES direction with the file name PRXnn.XY, where nn is a negative number
that is compounded from the identities of the start (n1) and end states (n2) thus: nn =
−(100 ∗ n1 + n2).

3. It is important to be sure that the start and end states represent real, observed transitions
in the BPD or TAD simulation. The danger here is using two structures that are not mech-
anistically close. If this is not the case, the NEB calculation is unlikely to converge, as there

172

c⃝STFC Section 6.7

will be no simple path (with preferably a single energy maximum) between the start and end
states.

4. When running an NEB calculation to improve the accuracy of the activation energy a more
stringent tolerance must be set. For example the recommended value for the force tolerance
is normally 1.0 (in DL POLY units), but values one or two orders of magnitude less may be
tried. It should be noted however that before the NEB calculation is run, the configurations
representing the start and end configurations must first be minimised to the accuracy required
by the new tolerance, by using the DL POLY Classic optim option. These optimised struc-
tures must be returned to the BASINS directory with the same file numbers as the original
CFGBSN files.

173

Chapter 7

Metadynamics

174

c⃝STFC Section 7.0

Scope of Chapter

This chapter describes the facilities within DL POLY Classic for studying the thermodynamics of
phase transitions using the method of metadynamics.

175

c⃝STFC Section 7.2

7.1 Overview

Metadynamics [69, 70] is a method for studying the thermodynamics of activated processes, for
which purpose it accelerates the time scale for structural changes to occur and, at the same time,
accumulates data describing the free energy surface, from which the free energy of the the structural
transition may be obtained. The specific implementation within DL POLY Classic uses this method
in the context of transitions to/from crystalline phases. Phase transitions, for example from the
liquid to the solid state, frequently exhibit hysteresis such that one state persists after it has become
thermodynamically unstable. This is due to the existence of a free energy barrier between the states,
which inhibits the transition. Metadynamics provides a means to overcome the free energy barrier
and facilitate the phase transition on a timescale accessible by molecular dynamics simulation.

Metadynamics was originally devised by Laio and Parrinello [69] and the implementation in
DL POLY Classic is based on the methodology described by Quigley and Rodger [70]. The meta-
dynamics routines in DL POLY Classic were originally written by David Quigley and Mark Rodger
at the University of Warwick and incorporated into the package by W. Smith.

Note that it is intended that this facility be used to study phase transitions and there is an
accompanying expectation that such studies will be undertaken using either an NVT, NPT or NσT
ensemble. Note also that when used together with shell model electrostatics the metadynamics
routines revert to velocity Verlet integration .

7.2 Theory of Metadynamics

In metadynamics the Hamiltonian that defines the dynamics of an N -particle system is augmented
by a time dependent bias potential which is a function of appropriate order parameters1 that
characterise the structure of the system:

H[rN , t] =
N∑
i=1

pi
2mi

+ U(rN) + V [sM (rN), t]. (7.1)

In this equation U(rN) is the usual potential energy function describing the interactions between,
and within, the molecules. pi is the momentum of the i′th atom and mi its mass. The novel term
V [s(rN), t] is the time dependent bias potential, which is a function of a vector sM that is an
ordered set of M order parameters, each of which is defined by the instantaneous positions rN of
the atoms in system. The bias potential is time dependent in the sense that it can be ‘grown’ by
adding, at periodic intervals of time τG, a Gaussian term of weight w and width δh:

V [sM (rN), t] = w
NG∑
k=1

exp

[
−|sM (kτG)− sM (t)|2

2δh2

]
, (7.2)

where k runs over all previously deposited Gaussians and NG = int(t/τG). The force on each atom
f
i
derived from the Hamiltonian (7.1) is given by

f
i
= −∇iU(rN)−

M∑
j=1

∂V

∂sj
∇isj(r

N) (7.3)

If the deposition rate w/τG is slow enough the motion of the order parameters sM is adiabatically
separated from the motion of the atomic system. After a sufficiently long simulation, the bias
potential cancels out or ‘fills’ the free energy landscape of the potential U(rN) and permits an

1The term collective variable may be used as an alternative to order parameter.

176

c⃝STFC Section 7.3

accelerated dynamics. Meanwhile the bias potential becomes a measure of the free energy surface
i.e.

FG(s
M) = − lim

t→∞
V [sM (rN), t] (7.4)

The accuracy of this estimation of the free energy surface is dependent on the deposition rate and
the effective diffusion constant of the order parameters. Typically the error is of order w, the
Gaussian weight. A discussion of these issues is given by Laio et al [71]. and Quigley and Rodger
[70].

The importance of using order parameters in the Hamiltonian (7.1) is that they are a direct
measure of the structure of a particular phase. Increasing the bias potential therefore has the effect
of destabilising phases that are characterised by these parameters, forcing the simulation to move
to alternative structures with lower free energy. In general several different order parameters can
be used at the same time, to improve the control of the selectivity of the various phases and the
pathways between them. However, this must be weighed against the additional computational cost,
which grows exponentially with the number of order parameters.

Quigley and Rodger have described a protocol for deciding which order parameters to use in
[70]. Firstly a set of simulations of the disordered state and any accessible crystalline polymorph
are performed and the equilibrium distributions for the candidate order parameters obtained (see
section 7.4.1). Any sets of parameters for which the distributions overlap are discarded until the
sets remaining describe the known states with minimum ambiguity. This ensures that the realisable
structures are distinct in the collective space of the order parameters. However this approach does
not guarantee that pathways between states will match those that occur in the unbiased system,
though it does set an upper bound for the corresponding free energy barrier. An alternative method
devised by Peters and Trout offers a better description of pathways [72].

7.3 Order Parameters

The order parameters available in DL POLY Classic are as follows:

1. Potential energy [73];

2. The Q4 and Q6 parameters of Steinhardt et al [74];

3. The ζ tetrahedral parameter of Chau and Hardwick [75];

These order parameters are described below.

7.3.1 Potential Energy as an Order Parameter

The use of potential energy as an order parameter was pioneered by Donadio et al [73]. It is self
evident that the configuration energy is a well behaved function that takes on distinct values for
different structures. It has the additional advantage that it requires no additional computation
time, since it is normally calculated automatically during any molecular dynamics simulation. It
is also straightforward to calculate the associated biasing forces and stress tensor contributions:

f
i
→ f

i
(1 +

∂V

∂U
) (7.5)

σ → σ(1 +
∂V

∂U
) (7.6)

In addition to using potential energy as a global parameter Quigley and Rodger advocate its use
as a local parameter [70], which pertains to a specific subset of atoms in the system - namely those

177

c⃝STFC Section 7.3

that form the central atoms in the definitions of the Steinhardt or tetrahedral order parameters
discussed in the following sections. This allows the use of potential energy in association with
these order parameters. This approach has the advantage that it allows the user to drive structural
changes in parts of the system that are of greatest interest and not (say) the solvent or substrate.
In implementing this, a corresponding calculation of the local potential energy and stress tensor
needs to be added to each DL POLY force routine. It turns out that it is not practical to do this in
all of DL POLY’s force routines, in particular those that determine many-body forces e.g. Tersoff
and metal potentials do not have this capability. A similar omission occurs with the reciprocal
space term of the Ewald sum.

7.3.2 Steinhardt Order Parameters

The parameters of Steinhardt, Nelson and Ronchetti [74] employ spherical harmonics to describe
the local order of atoms of type β surrounding an atom of type α, thus:

Qαβ
ℓ =

 4π

2ℓ+ 1

ℓ∑
m=−ℓ

∣∣∣∣ 1

NcNα
Q̄αβ

ℓm

∣∣∣∣2
1/2 (7.7)

where

Q̄αβ
ℓm =

Nb∑
b=1

fc(rb)Yℓm(θb, ϕb). (7.8)

The summation in equation (7.8) runs over all Nb atoms of type β within a prescribed cutoff
surrounding an atom of type α and rb represents the scalar distance between the α and β atoms.
The function fc(rb) is a switching function that sets the cutoff range at the required separation in
a continuous (and therefore differentiable) manner. It has the form:

fc(r) =

1 : r ≤ r1
1
2

{
cos

[
π (r−r1)
(r2−r1)

]
+ 1

}
: r1 < r ≤ r2

0 : r > r2

(7.9)

The parameters r1 and r2 define a range over which the β atoms gradually cease to count towards
the overall sum. Note that the numbers Nc and Nb in the above formulas are formally expected to
be the same in a perfect crystal. However, while Nc remains fixed, Nb may fluctuate according to
circumstance. (In fact the switching function replaces the strict cut off in the original definition by
Steinhardt et al in which Nc would be equivalent to

∑Nb
b=1 fc(rb) rather than a constant.) Quigley

and Rodger also note that order parameter is not scale invariant between systems of different
numbers of atoms [70], however this does not matter for simulation where the numbers are fixed.
The spherical harmonic parameter ℓ is confined to the values 4 and 6 in the DL POLY Classic
implementation, giving the order parameters Qαβ

4 and Qαβ
6 .

The forces arising from the Steinhardt parameters are given by:

f
ij

= −r̂ij
∂V

∂Qαβ
ℓ

1

Qαβ
ℓ

4π

2ℓ+ 1

(
1

NcNα

)2

×

ℓ∑
m=−ℓ

{
ℜ(Q̄αβ

ℓm)
d

drij
[fc(rij)ℜ(Yℓm(θij , ϕij))]

+ℑ(Q̄αβ
ℓm)

d

drij
[fc(rij)ℑ(Yℓm(θij , ϕij))]

}
. (7.10)

where ℜ and ℑ indicate the Real and Imaginary parts of complex quantities.

178

c⃝STFC Section 7.4

The stress tensor contributions arising from these forces are given by

σαβ → σαβ − fαijr
β
ij . (7.11)

7.3.3 Tetrahedral Order Parameters

The form of the tetrahedral order parameter in DL POLY Classic is that of Chau and Hardwick [75],
which quantify the degree to which atoms surrounding a chosen atom are arranged tetrahedrally.
When the chosen atom and its surrounding neighbours are of the same type (α) the parameter is
defined by formula

ζα =
1

NcNα

Nα∑
i=1

Nα∑
j ̸=i

Nα∑
k>j

fc(rij)fc(rik)(cosθjik + 1/3)2, (7.12)

where indices i, j and k run up to Nα atoms of type α. Integer Nc and function fc(r) are as for the
Steinhardt parameters (i.e. fc once again replaces a fixed cut off and Nc is a fixed constant). This
order parameter is maximal for tetrahedral atomic arrangements. The atomic forces that arise from
this order parameter can be expressed in terms of pair forces between atoms i and j and between
i and k which are given by

f
ij

= − ∂V
∂ζα

{
2

rij
fc(rij)fc(rik)(cosθjik + 1/3)(r̂ik − r̂ijcosθjik)

+ (cosθjik + 1/3)2
dfc(rij)

drij
fc(rik)r̂ij

}
(7.13)

f
ik

= − ∂V
∂ζα

{
2

rik
fc(rij)fc(rik)(cosθjik + 1/3)(r̂ij − r̂ikcosθjik)

+ (cosθjik + 1/3)2
dfc(rik)

drik
fc(rij)r̂ik

}
. (7.14)

The stress tensor contributions can be described in terms of these forces:

σαβ → σαβ − fαikr
β
ik − f

α
ijr

β
ij . (7.15)

7.3.4 Order Parameter Scaling

The order parameter vector sM consists of an ordered set of different order parameters and it is not
generally the case that all of them return numbers of the same order of magnitude. This is partic-
ularly true for the potential energy. It is therefore sensible that when using the order parameters
collectively to define the state of a system, that they should be scaled to give numbers of simular
magnitudes. So when specifying order parameters to define the metadynamics DL POLY Classic
allows the user to include a scale factor in the definition. This appears in the STEINHARDT and
ZETA data files described in the following section.

7.4 Running Metadynamics Simulations

The recommended procedure for running metadynamics with DL POLY Classic is as follows.

1. Scope out the appropriate choices of order parameters for your system following the method
of Quigley and Rodger outlined above in section (7.2) and in [70]. You should use one of the
(equilibrated) REVCON files as the starting configuration for your metadynamics study.

179

c⃝STFC Section 7.4

2. Decide a suitable interval τG for depositing the Gaussians (7.2) and an appropriate Gaussian
height w and width δh to ensure accuracy for the free energy calculation. See [71] and [70] for
details. Along with this the user must also choose a Gaussian deposition/convergence scheme
(see section 7.4.1).

3. Set up the metadynamics option in the CONTROL file as follows:

(a) Set the metadynamics directive:
metadynamics
or use the equivalent directive:
metafreeze
Then enter the metadynamics control variables one per record as indicated below. Com-
ment records may be inserted if the first character is the hash symbol (#) or the am-
persand (&).

(b) Set the number of order parameters to be used (ncolvar):
ncolvar n
where n is an integer.

(c) If Steinhardt order parameters are required, activate the option with the directive:
lstein

(d) If tetrahedral order parameters are required, activate the option with the directive:
ltet

(e) If the global potential energy order parameter is required, activate the the option with
the directive:
lglobpe

(f) If local potential energy order parameters are required, activate the option with the
directive (note that global and local potential energy are mutually exclusive options):
llocpe

(g) Set the scale factor for the global potential energy order parameter:
globpe scale f
where f is a real number.

(h) Set the scale factor for the local potential energy order parameter:
locpe scale f
where f is a real number.

(i) Set the number of Steinhardt Q4 parameters required:
nq4 n
where n is an integer.

(j) Set the number of Steinhardt Q6 parameters required:
nq6 n
where n is an integer.

(k) Set the number of tetrahedral ζ parameters required:
ntet n
where n is an integer.

(l) Set the Gaussian potential deposition interval (in units of time steps):
meta step int n
where n is an integer.

(m) Set the height (w) of the Gaussian potentials (in units of kBT , where T is the simulation
temperature):

180

c⃝STFC Section 7.4

ref W aug f
where f is a real number.

(n) Set the Gaussian potential width parameter:
h aug f
where f is a real number.

(o) Set the Gaussian control key:
hkey n
where n is an integer. See section (7.4.1) for guidance.

(p) Set the control parameter for well-tempered dynamics (required when hkey is 2):
wt Dt f
where f is a real number.

(q) Close the metadynamics specification:
endmet

4. Set other CONTROL file directives as follow:

(a) Select the restart noscale option if the CONFIG file was pre-equilibrated, otherwise
leave out the restart keyword altogether.

(b) Set the length of the simulation required (steps) and the equilibration period (equil)
(both in time steps). The equilibration can be short or absent if the system was pre-
equilibrated.

(c) You must select one of the Nosé-Hoover NVT, NPT or NσT ensembles. Metadynamics
is only available for one of these options. The program automatically defaults to velocity
Verlet integration, if you use shell model electrostatics.

(d) If you wish to follow the structural changes, set the trajectory option in the CONTROL
file. This will produce a HISTORY file you can view or analyse later.

(e) Set the remaining CONTROL keywords as for a normal molecular dynamics simulation.

5. Prepare, if required, the file STEINHARDT, which defines the control variables for the Stein-
hardt order parameters. The file specification is as follows.

(a) The file contains data for both Q4 and Q6 order parameters.

(b) The records describing the Q4 entries appear first. There is one information record
followed by nq4 data records. (nq4 is defined in item 3(i) above.) No Q4 entries appear
if nq4 is zero. After this, the records for the Q6 parameters appear. There is one
information record, followed by nq6 data records. (nq6 is defined in item 3(j) above.)
The records are free format and the content of the information records is ignored by the
program.

(c) Each data record (for both Q4 and Q6) consists of (in order)
- The name of the atom type α (max. 8 characters);
- The name of the atom type β (max. 8 characters);
- The control parameter r1 for the function fc(r) in equation (7.9) (real);
- The control parameter r2 for the function fc(r) in equation (7.9) (real);
- The scale factor for the order parameter (real);
- The number Nc of expected atoms of type β around the α atom (integer).

6. Prepare, if required, the file ZETA, which defines the control variables for the tetrahedral
order parameters. The file specification is as follows.

181

c⃝STFC Section 7.4

(a) The file consists of 1 information record followed by ntet data records. The data records
are free format and the content of the information record is ignored by the program.

(b) Each data record consists of (in order)
- The name of the atom type α (max. 8 characters);
- The cutoff parameter r1 for the function fc(r) (real);
- The cutoff parameter r2 for the function fc(r) (real);
- The scale factor for the order parameter (real);
- The number Nc of expected atoms of type α around each α atom (integer).

7. Run the metadynamics simulation. This will perform a simulation at the temperature and
pressure requested. When the simulation ends, proceed as follows.

(a) Check the OUTPUT file. Make sure the simulation behaved sensibly and terminated
cleanly. If the required number of time steps has not been reached, the simulation can
be restarted from the REVCON and REVIVE files (renaming them as CONFIG and
REVOLD for the purpose) and setting the directive restart (with no qualifier) in the
CONTROL file.

(b) Use the DL POLY Java GUI to plot the system energy and temperature for the whole
of the simulation and make sure no key variables misbehave.

(c) The HISTORY file, if requested, contains the trajectory of the system. This may be
viewed, or otherwise investigated, by appropriate viewing or analysis software.

(d) The METADYNAMICS file produced by the run contains the data describing the evo-
lution of the time dependent bias potential (equation 7.1). This file consists of a series
of records, the content of each is:
- The meta-step (current time step number divided by the Gaussian deposition interval
meta step int). Format (i8).
- All ncolvar order parameters selected. Format ncolvar*(e15.6).
- The height of the deposited Gaussian divided by kbT . Format (e15.6).

7.4.1 Additional Considerations

1. Choosing the Gaussian convergence scheme. DL POLY Classic offers three different
schemes for handling the addition of the Gaussians to the bias potential. Further details on
these schemes can be obtained from Quigley and Rodger [70].

(a) Simple addition. Gaussians with fixed height and width parameters are simply added
to the bias potential. This option is selected by setting hkey=0 in the metadynamics
section of the CONTROL file.

(b) Wang-Landau recursion. Starting from a given Gaussian height a histogram is ac-
cumulated with each Gaussian addition recording the visits to each square of the order
parameter space. Once this histogram is approximately (say 80%) flat, the Gaussian
height is halved, the histogram is reset to zero and then the process continues until a
higher degree of flatness has been achieved, and so on. The procedure is meant to en-
sure that the added Gaussians make progressively finer contributions as convergence is
approached. Set hkey=1 for this option. (Note this option has been implemented only
for the case where ncolvar=1.)

(c) Well-tempered dynamics. The well-tempered scheme uses a maximum energy crite-
rion. A threshold energy Vmax is set above the largest expected energy barrier and at

182

c⃝STFC Section 7.4

each step the Gaussian deposition height is given by

w = w0exp[−Vaug(sM)/Vmax]

where Vaug is the current value of the bias energy. The parameters w0 and Vmax are
defined by the input directives ref W aug andwt Dt in the CONTROL file (see above).
Set hkey=2 for this option.

2. Defining the switching function fc(r)
The switching function is determined by the parameters r1 and r2 in formula (7.9). These
must be chosen so that r2 absolutely excludes near-neighbouring atoms that are not intended
to be considered part of the sum in equation (7.7) or (7.12). r1 should not be so short that is
sometimes does not include atoms that should be fully counted. The range r1 → r2 should be
set to correspond to the minimum in the appropriate pair correlation functions in the relevant
system states. This choice minimises spurious forces that can arise from order parameters
that have different ranges [70].

3. Using DL POLY Classic to help select appropriate order parameters
Section (7.2) outlined a protocol for deciding suitable order parameters for a particular meta-
dynamics study, which required the construction of distribution functions for candidate order
parameters. These may be obtained from DL POLY Classic by perform simulations of the
relevant system states with the metadynamics directive set in the CONTROL file, but with
the Gaussian accumulation disabled by setting the Gaussian height parameter ref W aug
to zero. The resultant dynamics will be time independent and the METADYNAMICS file
will tabulate values of the order parameters at regular intervals. It remains then to construct
histograms of these parameters to determine the degree of overlap between them as required.

4. Choosing order parameter scaling factors
The widths of the histograms for the order parameter distributions described in the previous
paragraph should also be used to set the appropriate order parameter scaling factors referred
to in section (7.3.4).

5. Deciding the simulation length
Deciding that the metadynamics simulation has been long enough is a matter of judging
whether the system is diffusing like a random walk in the space of the order parameters i.e.
that it is sampling all the available parameter space. This is somewhat easier in the cases
of Wang-Landau recursion and well-tempered dynamics as it is indicated by the parameter
w (the Gaussian height) becoming relatively small. In general a degree of experience in the
technique is required to make a good judgement.

6. Contra-indications
A useful point to note is that if a simulation does not reach a state where transitions between
minima occur rapidly without residual hysteresis, then by implication the original choice of
order parameters was poor.

7.4.2 Analysing the Metadynamics Results

Analysis of the results of a metadynamics simulation can take a number of forms, some of which
are outlined here.

1. Determination of free energy
The information in the METADYNAMCS file is sufficient to define the system free energy

183

c⃝STFC Section 7.4

surface through equation 7.4. The free energy is a function of the M order parameters in
the vector sM (rN). This information can be used to determine the free energy of activation
and free energy differences between states in the following manner. Firstly the free energy
is projected down to a smaller subset of order parameters (usually about 2) by integrating
exp(−F/kBT) over the other order parameters and then Boltzman-inverting. (This is an
expensive operation if M > 3). Once the free energy is mapped onto fewer dimensions the
free energy barrier heights and free energy differences can be read off directly.

2. Following the system trajectory
It is often useful to track the trajectory of the system in the space of the order parameters
to see how well the simulation is exploring that space. For this purpose is is possible to plot
the contents of the METADYNAMICS file graphically in a selection of 2D sections. Simple
graphics are generally sufficient for this purpose. Alternatively, the HISTORY file may be
viewed as a movie, using packages such as VMD [10] to show the transformations that occur.

184

Chapter 8

Path Integral Molecular Dynamics

185

c⃝STFC Section 8.0

Scope of Chapter

This chapter describes the implementation of Path Integral Molecular Dynamics (PIMD) in DL POLY Classic,
which permits the calculation of quantum corrected thermodynamic and structural properties for
atomistic systems.

186

c⃝STFC Section 8.2

8.1 Overview

Path Integral Molecular Dynamics (PIMD) is an adaptation of Feynmann’s path integral method
[76] for calculating the properties of quantum systems. PIMD is derived from an earlier method
known as Path Integral Monte Carlo (PIMC) and is applicable to the same range of molecular
systems. However, despite being a molecular dynamics technique PIMD is not an implementation
of quantum dynamics and, unlike classical molecular dynamics, provides no dynamical information
about the system under study. Properties such as time dependent correlation functions and trans-
port coefficients are therefore beyond its scope. It is purely concerned with obtaining quantum
corrected thermodynamics and structural properties. For this reason, PIMD is best thought of as
PIMC by other means.

PIMD was implemented in DL POLY Classic by Bill Smith. Users should note that the imple-
mentation cannot deal with rigid bonds, rigid molecules (or rigid molecular parts) or polarisable
ions. It can however handle free atoms, rigid ions and fully flexible molecules.

8.2 Theory of PIMD

The theory of path integrals is described in a very accessible manner in the book ‘Quantum Me-
chanics and Path Integrals’ by Feynmann and Hibbs [76] and a modern take on the subject can
be found in Mark Tuckermann’s book ‘Statistical Mechanics: Theory and Molecular Simulation’
[77]. Both are highly recommended. Aspects of the theory implemented in DL POLY are described
in chapter 12 of the e-book ‘Elements of Molecular Dynamics’ by Smith [78]. In this section we
outline the essential details only.

The central idea of both PIMD and PIMC is that the partition function of a system of quantum
particles is isomorphic with that of a system of classical ring polymers. In this isomorphism each
ring polymer corresponds to one quantum particle1. The so-called ‘beads’ of the polymer represent
alternative locations for the quantum particle according to the probabilistic interpretation of the
wave function and collectively describe the ‘Heisenberg uncertainty’ in the quantum particle’s
location. The ring polymer is linked together by harmonic bonds acting between pairs of beads,
which maintain the integrity of the ring and constrain the beads to locations that are consistent with
quantum probability. Otherwise the beads are essentially free particles independently exploring
phase space.

We can write the partition function (ZN) for the N-particle quantum system as follows (in
which the resemblance to a system composed of classical ring polymers should be evident):

ZN =

(
mL

2πh̄2β

)3LN/2 ∫
. . .

∫
exp

−β N∑
j=1

L∑
k=1

[
κ

2
(|rj,k − rj,k−1|)2 +

1

L
Φ
(
rj,k

)]ΠN
j ΠL

k drj,k,

(8.1)
with

κ =
mL

(βh̄)2
. (8.2)

In this equation N is the number of quantum particles and L is the number of beads chosen
to represent each particle. Each pair of indices j and k identifies the j′th particle and its k′th
bead. Symbols ΠN

j ΠL
k drj,k represent a product of the differential coordinates of all beads (i.e.

dxj,kdyj,kdzj,k . . . etc.). The parameter κ is the force constant of the harmonic bonds and (8.2) shows
that it is defined by the quantum particle’s mass, the system temperature (through Boltzmann’s
constant β = 1/kBT), Planck’s constant h̄ and the number of beads in the ring (L). The number

1As far as DL POLY is concerned, a ‘quantum particle’ is a simple atom or ion.

187

c⃝STFC Section 8.2

L is an adjustable parameter and its value reflects how ‘quantum-like’ the particle behaves. A
low number of beads (L ∼ 10) implies the particle behaves semi-classically, while a large number
L ∼ 300 implies significant quantum behaviour. This gives some scope for ‘tuning’ the quantum
nature of the simulation to suit the application. Formally, equation (8.1) is exact only in the limit:
L→∞, otherwise PIMD should be regarded as semi-quantitative.

The potential function Φ
(
rj,k

)
appearing in equation (8.1) describes how an individual bead,

with indices j and k, interacts with its environment, and it is significant from a quantum perspective
that it appears in (8.1) with the associated factor 1/L. The most important quantum effect in
atomistic simulations is arguably quantum tunnelling - the ability of an atom to penetrate regions
that are classically forbidden. This effect can be seen in the radial distribution function (for
example), which describes the atomistic structure and therfore impacts on the thermodynamics of
the system. In this context the potential factor of 1/L indicates that the bead interaction with
the environment is reduced in comparison with the original classical particle. This allows a greater
ability of the beads to penetrate into classically improbable regions, which is consistent with the
idea of quantum tunnelling.

The energy of the harmonic bonds (determined by the parameter κ in (8.1)) is a component
of the kinetic energy of the quantum particle related to its zero point energy. However, in the
classical simulation of the isomorphic ring polymers, this term is manifestly a contributor to the
configurational energy of the rings. Its meaning is therefore different in the two systems and this
fact should be noted. (Incidentally, note that when the subscript k − 1 equals zero in (8.1) this is
interpreted as the index L, which is required by the closure of the ring polymer.)

When the environment of the quantum particle consists of other quantum particles, the form of

the potential function Φ
(
rj,k

)
may (for example) be written as a sum of bead-bead pair potentials:

Φ
(
rj,k

)
=

1

2

N∑
j′ ̸=j

ϕpair(|rj,k − rj′,k|), (8.3)

where ϕpair is a pair potential of the van der Waals or Coulombic kind. What is noticeable about
equation (8.3) is that there is no sum over the bead index k on the right. This reflects the fact
that, due to a quirk of the path integral origins of (8.3) [78], a given bead on the polymer ring
(k) can only interact with a single corresponding bead (k′) on neighbouring polymer rings i.e.
k = k′ and interactions where k′ ̸= k are forbidden2. This requirement means the calculation of the
potential energy and force is considerably less costly than would be expected in a simulation of true
classical ring polymers. This amounts to a substantial ‘decoupling’ of the bead-bead interactions
(in classical terms) and means that, to a large extent, the whole system can be simulated as a set
of L quasi-independent systems, which are coupled via the harmonic springs. This decoupling is
exploited in the way DL POLY performs the PIMD simulations.

In principle, the simulation of a system of ring polymers with harmonic bonds, bead masses
and bead-bead interactions as defined above, will effectively be a simulation of the corresponding
quantum system, correct to an accuracy determined by the chosen number of beads. From such a
simulation the structure and thermodynamics of the quantum system can be obtained in a manner
that is similar to any classical simulation. It is evident that the simulation could equally be
performed using either molecular dynamics or Monte Carlo, though in the case of DL POLY, it is
inevitably the former choice that is taken.

A potential problem with PIMD simulations is that harmonic bonds are notoriously non-ergodic,
which means that energy exchange between degrees of freedom is inefficient and the system is slow
to equilibrate. Indeed, even very long simulations can fail to achieve the equipartition necessary for

2Technically speaking, beads k and k′ exist at different instants of imaginary time and are therefore invisible to
each other.

188

c⃝STFC Section 8.2

a successful calculation of thermodynamic properties unless strong preventative measures are taken.
As described in [77] these measures include the use of staging variables in place of the usual atomic
coordinates and an extensive regime of thermostatting using either Nosé-Hoover chains [79, 77]
or the so-called ‘gentle’ thermostats of Leimkuhler et al [80], both of which which are options in
the DL POLY implementation. Note that, according to (8.2), a large particle mass m, or a large
number of beads L, or a high temperature (i.e. small β) implies a large force constant κ. Large
values of κ worsen the ergodicity problems and simultaneously demand an unusually short time
step for stable simulations, which leads to slower sampling of phase-space. It is therefore usual to
decrease the number of beads when the particle mass is large or the simulation temperature is high,
since the quantum particles behave more classically in these cases.

In PIMD molecular dynamics is used entirely as a means to explore the phase space of the
system. (In PIMC the same job is done by Metropolis sampling.) The dynamics is based on a
Hamiltonian of the form

H({p
j,k
}, {rj,k}) =

N∑
j=1

L∑
k=1

[
p2j,k
2m′ +

κ

2
(|rj,k − rj,k−1|)2 +

1

L
Φ
(
rj,k

)]
, (8.4)

in which we have introduced the bead momentum p
j,k

and a so-called bead dynamical mass m′,

which need not be the same as the formal mass m of the quantum particle if the intention is merely
to use this Hamiltonian to drive the dynamics of the classical system. Suitable equations of motion
are easily obtained from this. However, as was mentioned above, it is essential to augment the
dynamics with methods to ensure ergodic behaviour. This is described in greater detail below,
following a description of properties calculable by PIMD.

An important thermodynamic property of a quantum system is the internal energy E, which is
given thermodynamically as the derivative of the partition function:

⟨E⟩ = − ∂

∂β
ln(ZN). (8.5)

Applying this rule to the partition function (8.1) leads to the standard energy estimator for PIMD:

⟨E⟩ = 3LN

2β
−
⟨

N∑
j=1

L∑
k=1

[
κ

2
(|rj,k − rj,k−1|)2 −

1

L
Φ
(
rj,k

)]⟩
. (8.6)

However, it was shown by Herman et al. [81] that fluctuations in this estimator grow linearly with
the number of beads L, raising concerns about the accuracy of the mean value. An alternative
estimator based on the virial was offered that overcame this deficiency. This is written as

⟨E⟩ = 3N

2β
+

⟨
1

L

N∑
j=1

L∑
k=1

[
1

2
(rj,k −Rj) ·

∂

∂rj,k
Φ
(
rj,k

)
+Φ

(
rj,k

)]⟩
, (8.7)

where

Rj =
1

L

L∑
k=1

rj,k, (8.8)

is the centre of mass of the j′th ring. The virial estimator (8.7) ought to be more accurate than
the standard energy estimator (8.6), but in practice this is not always the case. Both versions are
available in DL POLY and a comparison between the two is useful as an indicator of statistical
convergence.

189

c⃝STFC Section 8.3

A formula for the system pressure in PIMD simulations can be obtained by differentiating the
Hamiltonian (8.4) with respect to volume:

P = −
⟨(

∂

∂V
H({p

j,k
}, {rj,k})

)⟩
. (8.9)

Assuming exclusively pair potentials for the bead-bead interactions leads to

PV =
LN

β
− 1

3

⟨
N∑
j=1

L∑
k=1

κ(|rj,k − rj,k−1|)2 +
1

2L

N∑
j′ ̸=j

(
∂

∂rjj′,k
ϕpair(rjj′,k)

)
· rjj′,k)

⟩ . (8.10)

where
rjj′,k = rj′,k − rj,k. (8.11)

With regard to structural properties, the radial distribution function g(r) can be obtained in a
manner closely resembling the classical case (allowing for the multiplicity of beads per atom):

g(r) =
1

LNρ

⟨
L∑

k=1

N∑
j=2

j∑
j′=1

δ(|r − rj′,k + rj,k|)
⟩
. (8.12)

From this formula it can be seen that g(r) is calculated entirely from correlations between corre-
sponding beads k on different ring polymers.

Another useful structural property is the mean-square radius of gyration of the polymer rings
⟨R2⟩ . This provides a measure of the delocalisation of the quantum particle implied by Heisenberg
uncertainty. It is defined as

⟨
R2
⟩
=

⟨
1

LN

N∑
j=1

L∑
k=1

|rj,k −Rj |2
⟩

(8.13)

where Rj is the centre of mass of the j′th polymer ring and is given by (8.8).
The mean-square radius is related to the mean-square bondlength ⟨B2⟩ defined as

⟨B2⟩ =
⟨
|rj+1,k − rj,k|2

⟩
(8.14)

(where the index j + 1 ≡ 1 when j = L.) The mean-square radius and bondlength are related
through the expression ⟨

R2
⟩
=

L

12
⟨B2⟩, (8.15)

which holds for ideal ring polymers in equilibrium. This relation affords a rough check that the
system is properly equilibrated, along with other indicators of equilibrium, which are described
below.

8.3 Path Integral Dynamics

In the main, the implementation of PIMD in DL POLY Classic follows the prescription given by
Tuckerman et al [82]. In the first part, the Cartesian coordinates defining the positions of the
polymer beads are cast into collective coordinates better able to address the range of time scales
in the motion of the rings. This process is known as ‘staging’. In the second part the dynamics
of the staged coordinates are subjected to an efficient thermostatting regime to ensure the system
dynamics are properly ergodic.

190

c⃝STFC Section 8.3

The staging coordinates uj,k are defined in the following manner:

uj,1 = rj,1

uj,k = rj,k −
(k − 1)rj,k+1 + rj,1

k
(k = 2, . . . , L), (8.16)

for which the inverse is obtained using the reverse formula:

rj,1 = uj,1

rj,k = uj,k −
(k − 1)rj,k+1 + rj,1

k
(k = L, . . . , 2). (8.17)

In addition, a set of parameters µk is introduced, which is defined as follows:

µ1 = 0

µk =
k

k − 1
(k = 2, . . . , L). (8.18)

In terms of these variables the driving Hamiltonian (8.4) can be re-written as

H({πj,k}, {uj,k}) =
N∑
j=1

L∑
k=1

[
π2j,k
2m′

k

+ µk
κ

2
(uj,k · uj,k) +

1

L
Φ
(
rj,k({uj′,k}

)
)

]
, (8.19)

where πj,k represents the momentum associated with the staged coordinate uj,k. In this equation
a new mass parameter m′

k has been introduced as the dynamical mass. The recommended values
given by Tuckerman et al. [82] are

m′
1 = m

m′
k = µkm (k > 1). (8.20)

Using the Hamiltonian (8.19) we may proceed to obtain the equations of motion for the system
of ring polymers. These are presented below with the necessary thermostats included. The ther-
mostats, it should be noted, are applied to every degree of freedom in the system individually - not
collectively as is more common in conventional molecular dynamics.

The equations of motion including Nosé-Hoover chains of length M per bead degree of freedom
[82] are

u̇j,k =
πj,k
m′

k

π̇αj,k = −κµkuαj,k −
1

L

∂

∂uαj,k
Φ
(
rjk({uαj′,k})

)
− ζαj,k,1παj,k

ζ̇αj,k,1 =
1

Q1

(
(παj,k)

2

m′
k

− kBTo

)
− ζαj,k,1ζαj,k,2 (8.21)

ζ̇αj,k,n =
1

Qk

(
Qk(ζ

α
j,k,n−1)

2 − kBTo
)
− ζαj,k,nζαj,k,n+1

ζ̇αj,k,M =
1

Qk

(
Qk(ζ

α
j,k,M−1)

2 − kBTo
)

where α = x, y, z as appropriate and To is the target temperature. The variables ζj,k,n etc. are
the thermostat variables. The values of the thermostat ‘mass’ parameters Qk recommended by
Tuckerman et al [82] are

Q1 = kBToτ
2, Qk = h̄2/LkBTo, (8.22)

191

c⃝STFC Section 8.3

where τ is a user defined time scale parameter appropriate for the timescale of the ring centre of
mass motion..

The forces required to update the momentum components παj,k above are obtained from

∂

∂uαj,1
Φ
(
rjk({uαj′,k})

)
=

1

L

L∑
k=1

∂

∂rαj,k
Φ
(
rjk

)
,

∂

∂uαj,k
Φ
(
rjk({uαj′,k})

)
=

1

L

(
(k − 2)

(k − 1)

∂

∂uαj,k
+

∂

∂rαj,k

)
Φ
(
rjk({uαj′,k})

)
. (8.23)

In DL POLY these equations are integrated using the velocity Verlet algorithm and it is useful to
note that the following quantity is formally conserved during the integration.

Econs =
N∑
j=1

L∑
k=1

[
π2j,k
2m′

k

+ µk
κ

2
(uj,k · uj,k) +

1

L
Φ
(
rjk({uαj′,k})

)
+

M∑
n=1

∑
α

{
1

2
Qk(ζ̇

α
j,k,n)

2 +
1

β
ηαj,k,n

}]
.

(8.24)
The variables ηj,k,n are obtained by integrating the variables ζj,k,n using the equation

η̇αj,k,n = ζαj,k,n. (8.25)

The last sum on the right of (8.24) clearly represents the energy of the thermostats, while the
preceeding terms refer to the quantum system.

The corresponding equations of motion with the gentle thermostats of Leimkuhler et al [80]
(which is again applied to every degree of freedom) are

u̇j,k =
πj,k
m′

k

π̇αj,k = −κµkuαj,k −
1

L

∂

∂uαj,k
Φ
(
rjk({uαj′,k})

)
− ζαj,kπαj,k (8.26)

dζαj,k =
1

Q

(
(παj,k)

2

m′
k

− kBTo

)
dt− Qχ2

2kBTo
ζαj,kdt+ χdW.

The first two equations in this series determine the thermostatted motion of the beads (c.f. (8.21)),
while the third determines the motion of the thermostats ζj,k. On the far right the third equation
includes an impulse term χdW for each thermostat, where χ defines the impulse magnitude and
dW is a random number selected from Gaussian distribution with zero mean and unit standard
deviation. Preceding this on the right is the dissipation term, which extracts heat energy from
the system to maintain the average temperature. χ is a user-selected parameter chosen to control
the rate at which energy is put into the system. The constant of dissipation Qχ2/2kBTo is fixed
by the fluctuation-dissipation theorem. In its original conception [80], the gentle thermostat was
intended to have a minimal effect on the system dynamics, so χ was small, which meant that time
dependent properties could be preserved, but that need not be a concern in PIMD simulations,
which are concerned with structure only.

In both approaches (8.21) and (8.26), it is useful to have some means of monitoring the simula-
tion to ensure that it properly samples from the canonical ensemble. This requires that the kinetic
energy of every degree of freedom has an average value of kBTo/2 and that the staged momenta
of the beads are collectively represented by a Gaussian distribution. In DL POLY the quality of
the obtained momentum distribution is assessed by comparing the even moments of the simulated
distribution function with the ideal values for a true Gaussian (see [78] ch. 12). The expected

192

c⃝STFC Section 8.4

values for true Gaussian moments are⟨
(π2j,k/m

′
k)
⟩

= kBTo⟨
(π2j,k/m

′
k)

2
⟩

= 3(kBTo)
2⟨

(π2j,k/m
′
k)

3
⟩

= 15(kBTo)
3 (8.27)⟨

(π2j,k/m
′
k)

4
⟩

= 105(kBTo)
4⟨

(π2j,k/m
′
k)

5
⟩

= 945(kBTo)
5.

Note that, in a simulation, the averages ⟨. . .⟩ are calculated over all momenta πj,k and over many
configurations of the equilibrated simulation. From (8.27) it follows that, in the ideal case

1 =

⟨
(π2j,k/m

′
k)
⟩

kBTo
=

⟨
(π2j,k/m

′
k)

2
⟩

3(kBTo)2
=

⟨
(π2j,k/m

′
k)

3
⟩

15(kBTo)3
=

⟨
(π2j,k/m

′
k)

4
⟩

105(kBTo)4
=

⟨
(π2j,k/m

′
k)

5
⟩

945(kBTo)5
. (8.28)

Thus the closeness of these ratios to the value unity indicates the quality of the assumed Gaussian
distribution for all momenta. Note the same analysis may also be conducted for the thermostat
momenta and this can be useful when exploring ergodicity issues. This is not available in the
default version of DL POLY Classic, but a subroutine for doing this (thermostat moments) is
available in the module integrator module.f and can be activated for the purpose.

8.4 Invoking the PIMD Option

To activate the PIMD option in DL POLY Classic appropriate entries must be made in the CON-
TROL file. At the head of the CONTROL file, in place of the integration keyword, the keyword
pimd should be inserted, followed by additional options. The syntax is one of the following three
options

pimd nvt nbeads taut

for PIMD with a single Nosé-Hoover thermostat per degree of freedom, or

pimd gth nbeads taut xsi

for PIMD with ‘gentle’ thermostats, or

pimd nhc nbeads nchain taut

for PIMD with Nosé-Hoover chains.

The additional options appearing on the directives are:

• nbeads (integer) is the number of beads in each ring polymer.

• nchain (integer) is the number of chained thermostats per degree of freedom.

• taut (real) is the thermostat relaxation time (τ) in ps.

• chi (real) is the magnitude of the impulse ‘force’ (χ) in ps−1

193

c⃝STFC Section 8.5

Each of these must be written in the indicated order. It is permissible to use more informative
invocations of these directives (provided the sequence order given above is preserved), such as

pimd nhc nbeads=10 nchain=4 taut=0.1

These simple directives are sufficient to invoke a PIMD simulation. However, the following points
should also be noted.

• As is mentioned in the theory section above, the number of beads per ring polymer is a
choice based on the expected degree of quantum behaviour of the constituent atoms. Some
experience is required to make an appropriate choice, but note that the same number of beads
represents all the atoms in the system, regardless of the different atoms that may be present.
The choice must therefore be made on the basis of the smallest atomic mass in the system if
the quantum behaviour is to be properly handled.

• The PIMD option implies velocity Verlet integration. The user should not therefore specify
the integration keyword at the head of the CONTROL file. If one is specified, DL POLY
will terminate due to conflicting instructions.

• PIMD also implies the NVT ensemble, so the user should not use the ensemble keyword in
the CONTROL file. Termination will again result if this is specified.

8.5 PIMD Files

In addition to the usual files DL POLY requires or creates, the PIMD option also makes use of the
following files.

8.5.1 THENEW and THEOLD

The file THENEW is created when a PIMD simulation completes. It contains the current values
of all the thermostat variables at the time of completion. The data is required for a subsequent
continuation of the simulation using the restart directive in the CONTROL file. For this purpose
the THENEW file must be renamed as THEOLD at the restart. These files are unformatted and
not human readable. The contents, should the user need to know, are as follows.

Record 1 lists three variables:

• Total number of beads in the system i.e. natms× nbeads;

• Length of thermostat chain per bead i.e. the variable nchain;

• The system temperature i.e. that variable temp.

The subsequent records contain the thermostat chains. There are nchain × natms × nbeads
records, each of which contains the following.
Records 2 to nchain× natms× nbeads+ 1 list six variables per record:

• ηx - x component of integrated thermostat of one bead

• ηy - y component of integrated thermostat of one bead

• ηz - z component of integrated thermostat of one bead

194

c⃝STFC Section 8.6

• ζx - x component of thermostat of one bead

• ζy - y component of thermostat of one bead

• ζz - y component of thermostat of one bead

The order in which the records are written is determined by three nested loops, the first (outer)
loop runs over the nchain thermostat chains, the second loop runs over the natms atoms and the
third (inner) loop runs over the nbeads beads for each atom.

8.5.2 RNDNEW and RNDOLD

The file RNDNEW is created when a PIMD simulation employing the gentle thermostats completes.
It contains the current values of all the variables defining the state of the DL POLY parallel random
number generator puni() at the time of completion. The information is required to restart a
simulation using the restart directive in the CONTROL file. The RNDNEW file must be renamed
as RNDOLD at the restart. These files are also unformatted and not human readable.

For a simulation performed on a parallel computer with mxnode processors, the files contain
mxnode records, each with 102 variables defining the state of puni() on each processor.

8.6 Things to be aware of when running a PIMD simulation

• Usually, when starting a DL POLY simulation, the user supplies a CONFIG file for the system
of interest containing the initial coordinates of every atom in the system. For the first run of
a PIMD simulation however, it is not necessary to supply the coordinates for every bead of
the ring polymers. Instead the user supplies the coordinates for each corresponding classical
particle, which DL POLY expands using small random displacements into nbeads coordinates
to complete the ring. This represents a first approximation to the ring polymers, which evolve
dynamically thereafter.

• After the first run of the simulation, the resulting REVCON file will contain coordinates for
all the beads in the system. It follows that the CONFIG file used to restart a simulation
necessarily contains coordinates for every bead and DL POLY expects these data to be present
in the file or else the restart will fail. This requirement also applies to the restart scale and
restart noscale options.

• The format of the expanded CONFIG file is essentially the same as a normal CONFIG file. If
there are formally N atoms (i.e. N quantum particles) in the system and each is represented
by L beads, the expanded file contains N ×L bead coordinates. The first N coordinates refer
to the first bead of each ring, the second set of N coordinates refer to the second bead of
each ring, and so on. This is important to know if the CONFIG file is to be used properly
for non-DL POLY applications.

• In addition to producing the standard output files: OUTPUT, REVCON, STATIS, REVIVE,
RDFDAT etc, the PIMD option also produces a thermostats file called THENEW (the format
of which is described above). This file contains the current values of the thermostat param-
eters at the time the run finished. This file should be renamed THEOLD for a restart of
the PIMD simulation. The file THEOLD is not required for the restart scale or restart
noscale options.

195

c⃝STFC Section 8.6

• The pimd gth option also produces a thermostat file THENEW on termination (and requires
the corresponding THEOLD file for a restart). In addition however, it also produces a file
RNDNEW, which stored the current state of the DL POLYparallel random number generator
puni. This must be renamed RNDOLD for a successful restart of the simulation. It is
important to note that in the current implementation it is assumed the restart will require
the same number of parallel processors as the previous run. The file RNDOLD is not required
for the restart scale or restart noscale options.

• Equilibration and ergodicity are key issues in PIMD simulations. A good deal of effort is
required sometimes to ensure that these requirements are properly fulfilled. Fortunately
there are some indicators to assist with these matters. Firstly, the OUTPUT file lists the
second, fourth, sixth, eighth and tenth moments (equation 8.28) of the momentum at the end
of the simulation. If the momentum distribution is properly ergodic, the normalised moments
should all be unity. In practice however, the higher moments tend to deviate increasingly
from unity, though the agreement should still be close. Significant departure should be viewed
critically. Also, if equilibration is good the standard 8.6 and virial 8.7 estimators should give
closely similar results. If they don’t then it is likely that ergodicity is an issue. The remedy is
largely a matter of experimenting with the control parameter values for the pimd directive
or setting a shorter time step. To be more certain, using a different thermostatting method
should afford a good comparison.

• Two test cases are available to try out the DL POLY PIMD implementation (see Chapter 9).
These systems are (a) neon (Test Case 40) and (b) water (Test Case 41), which both show
significant quantum effects but are quite different in character. The first is an atomic system,
while the latter includes the water as a polyatomic molecular entity. Both are outlined in
the following chapter and both are available from the CCPForge repository, where the source
code is located. It is worth trying different thermostatting methods in these systems from
the one supplied.

196

Chapter 9

Example Simulations

197

c⃝STFC Section 9.0

Scope of Chapter

This chapter describes the standard test cases for DL POLY Classic, the input and output files for
which are in the data sub-directory.

198

c⃝STFC Section 9.1

9.1 DL POLY Examples

9.1.1 Test Cases

The following example data sets (both input and output) are stored in the subdirectory data. Two
versions are provided for the Leapfrog (LF) and Velocity Verlet (VV) algorithms respectively, so
that you may check that your version of DL POLY is working correctly. All the jobs are short and
should require no more than a few minutes execution time, even on a single processor computer.
The test cases can be chosen by typing

select n a
from the execute directory, where n is the number of the test case and a is either LF, VV, CB or
RB. The select macro will copy the appropriate CONTROL, CONFIG, FIELD and if necessary the
TABLE or TABEAM files to the execute directory ready for execution. The output files OUTPUT,
REVCON and STATIS may be compared with the files supplied in the data directory.

The example output files provided in the data directory were obtained on 8 processors of an
Intel Xeon (Woodcrest) cluster with the following characteristics:

• Intel Xeon Dual-core processor, 3GHz (32 compute nodes, 2x2 cores each; master node; 2
NFS file servers);

• 8 GB memory per node;

• SUSE LINUX 10.1 with kernel 2.6.16.21-0.25-smp;

• Intel Compilers (version 10.1), Intel Cluster Tool kit including Intel MPI 3.0, MKL 9.1, and
VTune;

• InfiniPath interconnect (software stack 2.1).

It should be noted that the potentials and the simulation conditions used in the following test
cases are chosen to demonstrate functionality only. They are not necessarily appropriate for
serious simulation of the test systems. Note also that the DL POLY Classic Graphical User
Interface [9] provides a convenient means for running and viewing these test cases.

9.1.1.1 Test Case 1: KNaSi2O5

Potassium Sodium disilicate glass (NaKSi2O5) using two and three body potentials. Some of the
two body potentials are read from the TABLE file. Electrostatics are handled by a multiple timestep
Ewald sum method. Cubic periodic boundaries are in use. NVE ensemble.

9.1.1.2 Test Case 2: Metal simulation with Sutton Chen potentials

FCC Aluminium using Sutton-Chen potentials. Temperature is controlled by the method of Gaus-
sian constraints. NVT Evans ensemble.

9.1.1.3 Test Case 3: An antibiotic in water

Valinomycin in 1223 spc water molecules. The temperature is controlled by a Nosé-Hoover thermo-
stat while electrostatics are handled by a screened reaction field Coulombic potential. The water is
defined as a rigid body while bond constraints are applied to all chemical bonds in the valinomycin.
Truncated octahedral boundary conditions are used. NVT Hoover ensemble.

199

c⃝STFC Section 9.1

9.1.1.4 Test Case 4: Shell model of water

256 molecules of water with a polarizable oxygen atom using adiabatic dynamics. Temperature
is controlled by the Berendsen thermostat while electrostatics are handled by the reaction field
method with a “charge group” cutoff scheme. “Slab” period boundary conditions are used. The
water molecule (apart from the shell) is treated as a rigid body. NVT Berendsen ‘ensemble’.

9.1.1.5 Test Case 5: Shell model of MgCl2 at constant pressure

Adiabatic shell model simulation of MgCl2. Temperature and pressure are controlled by a Berend-
sen thermostat and barostat. An Ewald sum is used with cubic periodic boundary conditions. NPT
Berendsen ‘ensemble’.

9.1.1.6 Test Case 6: PMF calculation

Potential of mean force calculation of a potassium ion in SPC water. Electrostatics are handled by
the Ewald sum. The water is treated as a constrained triangle. PMF ‘ensemble’

9.1.1.7 Test Case 7: Linked rigid bodies

8 biphenyl molecules in cubic boundary conditions. Each phenyl ring is treated as a rigid body,
with a constraint bond to the other ring of the molecule. In the centre of each ring are three
massless charge sites which imparts a quadrupole moment to the ring. NVE ensemble.

9.1.1.8 Test Case 8: An osmosis experiment with a semi permeable membrane

The membrane is a collection of tethered sites interconnected by harmonic springs. There are no
electrostatic forces in the system. The simulation is run with the Hoover anisotropic constant
presure algorithm. (NST Hoover ensemble.)

9.1.1.9 Test Case 9: A surfactant at the air-water interface

The system is comprised of 32 surfactant molecules (trimethylaminododecane bromide or TAB-C12)
arranged either side of a slab of 342 water molecules approximately 30 Å thick. The surfactant
chains are treated with rigid bonds and the water molecules are treated as rigid bodies. The TAB
headgroup has fractional charges summing to +1 (the bromide ion has charge -1). The Ewald sum
handles the electrostatic calculations. The short range forces are taken from the Dreiding force
field. NVE ensemble.

9.1.1.10 Test Case 10: DNA strand in water

This system consists of a strand of DNA 1260 atoms in length in a solution of 706 (SPC) water
molecules. The DNA is aligned in the Z-direction and hexagonal prism periodic boundary conditions
applied. The electrostatic interactions are calculated using the Smoothed Particle Mesh Ewald
method. Note that the system has a strong overall negative charge which is strongly anisotropic
in distribution. The short range forces are taken from the Dreiding force field, and constraints
are used for all covalent bonds. For simplicity H-bonds are treated as harmonic bonds with an
equilibrium bondlength of 1.724 Å. NVE ensemble.

200

c⃝STFC Section 9.1

9.1.1.11 Test Case 11: Hautman-Klein test case 1

The system consists of 100 short chain surfactant molecules in a layer simulated under NVE con-
ditions . The total system size is 2300 atoms and the XY periodicity is a square. The Dreiding
force field describes the molecular interactions. All bonds are harmonic and all atoms are explicit.
The link-cell algorithm is in operation. NVE ensemble.

9.1.1.12 Test Case 12: Hautman-Klein test case 2

This is a simple test system consisting of 1024 charged particles in a layer in the NVT ensemble.
Lennard Jones forces are used to keep the atoms apart. The simulation cell is square in the XY
plane. NVE ensemble.

9.1.1.13 Test Case 13: Carbon Nanotube with Tersoff potential

This system consists of 800 carbon atoms in a nanotube 41.7 A in length. The MD cell is or-
thorhombic and square in the XY plane. The integration algorithm is NPT Berendsen. This is a
test for the Tersoff potential. NPT Berendsen ‘ensemble’.

9.1.1.14 Test Case 14: Carbon Diamond with Tersoff potential

This is another test of the Tersoff potential, this time for the carbon diamond structure consisting
of 512 atoms. A cubic MD cell is used with a NST Hoover integration algorithm. NST Hoover
ensemble.

9.1.1.15 Test Case 15: Silicon Carbide with Tersoff potential

This is an alloy system consisting of 2744 atoms of silicon carbide in a diamond structure. The
potential function used is the Tersoff potential. The integration algorithm is NPT Hoover and the
initial MD cell is cubic. NPT Hoover ensemble.

9.1.1.16 Test Case 16: Magnesium Oxide with relaxed shell model

Relaxed shell model of magnesium oxide with 324 sites. The lattice is cubic and the integration
algorithm is NST Berendsen. NST Berendsen ‘ensemble’.

9.1.1.17 Test Case 17: Sodium ion in SPC water

A simple simulation of a sodium ion in 140 SPC water molecules (421 sites in all). The water
molecules are treated as rigid bodies.The algorithm is the NVE ensemble and the Ewald sum
handles the electrostatic forces. The MD box is cubic. NVE ensemble.

9.1.1.18 Test Case 18: Sodium chloride molecule in SPC water

This system resembles test case 17, except that a sodium chloride ion pair is dissolved in 139 SPC
water molecules (419 sites in all). The MD cell is cubic and the water molecules are treated by
constraint dynamics in the NVT Evans scheme. Ewald’s method handles the electrostatics. NVT
Evans ensemble.

201

c⃝STFC Section 9.1

9.1.1.19 Test Case 19: Sodium chloride molecule in SPC water

This is a repeat of test case 18, except that half of the water molecules are treated using constraint
dynamics and the rest by rigid body dynamics. The integration algorithm is NPT Hoover. NPT
Hoover ensemble.

9.1.1.20 Test Case 20: Linked benzene ring molecules

This test consists of pairs of benzene rings linked via a rigid (constraint) bond. Each molecule has
22 atoms and there are 81 molecules, making a total of 1782 sites. The benzene rings are treated
in a variety of ways in the same system. In one third of cases the benzene rings and hydrogens
form rigid groups. In another third the carbon rings are rigid but the C-H bonds are treated via
constraints. In the final third, the C-H bonds are fully flexible and the rings are rigid. The MD
cell is orthorhombic (nearly cubic) and the integration is NPT hoover. NPT Hoover ensemble.

9.1.1.21 Test Case 21: Aluminium metal with EAM potential

This case presents an example of the use of the EAM potential for metals, in this case aluminium.
The system is 256 atoms and runs under a berendsen NPT enemble.

9.1.1.22 Test Case 22: Copper metal with EAM potential

Another example of a metal with an EAM potential. 256 copper atoms under a Berendsen NPT
ensemble.

9.1.1.23 Test Case 23: Copper-Gold (3/1) alloy with Gupta potential

This is an example of the analytical Gupta potential applied to a copper-gold alloy with a 3/1
Cu/Au ratio. The system consists of 256 atoms in total running under the NVE ensemble.

9.1.1.24 Test Case 24: Iron metal with Finnis Sinclair potential

In this example the analytical Finnis-Sinclair potential is applied to iron. The system consists of
250 iron atoms and runs under a Berendsen NPT ensemble.

9.1.1.25 Test Case 25: Nickel-Aluminium (1/1) alloy with EAM potential

Another example of an alloy using the EAM potential. This is a Nickel-Aluminium alloy in the 1/1
ratio. The NVE ensemble is used and the system has 432 atoms.

9.1.1.26 Test Case 26: Nickel metal with EAM potential

Another EAM simulation of a metal. 256 Nickel atoms under the Berendsen NPT ensemble.

9.1.1.27 Test Case 27: Calcite

NVE simulation of 420 molecules (2100 atoms) of calcium carbonate in the calcite crystal structure.
The carbonate anion is handled as a flexible unit with Morse potential bonds and harmonic bond
angles. NVE ensemble.

202

c⃝STFC Section 9.1

9.1.1.28 Test Case 28: Optimisation of Ice VII structure

432 SPC water molecules are arranged in a thermally excited Ice VII structure and the congugate
gradient method is used to optimise the structure to recover the perfect crystal form. Both rigid
body (RB) and constraint bond (CB) models are used to define the water molecule structure. The
optimisation proceeds to zero force convergence.

9.1.1.29 Test Case 29: Programmed minimisation of Ice VII structure

This test is a repeat of Test Case 28, except that the structural optimisation proceeds via a
programmed minimisation involving alternating periods of molecular dynamics and conjugate gra-
dient minimisation. Once again both rigid body (RB) and constraint bond (CB) models are used
to define the water molecule structure and conjugate gradient optimisation proceeds to zero force
convergence.

9.1.1.30 Test Case 30: Zero Kelvin structure optimisation of DNA

The DNA structure of Test Case 10 (1260 atoms) is here placed in a vacuum and a zero Kelvin
optimisation is applied to reduce the overall system energy. The smoothed particle mesh method
is used to handle the electrostatics.

9.1.1.31 Test Case 31: Linear molecule fluid

NPT Hoover simulation of a fluid consisting of 675 linear molecules (parameters approximate a
polyacetylene chain). A 6 site rigid body is used to represent the molecules. 4050 atoms. NPT
ensemble.

9.1.1.32 Test Case 32: TAD Simulation of Diffusion in Solid Argon

The TAD method is applied to Lennard Jones argon. A crystal of 255 argon atoms (FCC lattice
plus one vacancy) is simulated in the NVE ensemble.

9.1.1.33 Test Case 33: BPD Simulation of Diffusion in Solid Sodium Chloride

Bias potential dynamics is applied to a crystal of sodium chloride with the rocksalt structure. NVE
ensemble. 998 ions are present and two vacancies in a neutral structure. BPD is used to investigate
the diffusional hops and determine the activation energies.

9.1.1.34 Test Case 34: Energy Decomposition in Liquid DMSO

The energy decomposition (or solvation energy) facility is used to provide a breakdown of the
molecular configuration energy terms occuring in liquid dimethyl sulfoxide (DMSO). The basic
ensemble is obtained from Berendsen’s NVT algorithm. The DMSO molecule has flexible angles
but rigid (constraint) bonds. 512 molecules are present in the system. Reaction field electrostatics
are used.

9.1.1.35 Test Case 35: Free Energy Difference of DMSO/DMSO* in DMSO Solvent

This simulation represents a single point in a thermodynamic integration procedure to determine
the free energy difference between an excited DMSO molecule (labelled DMSO*) and the ground-
state DMSO molecule. The simulation corresponds to a mixed Hamiltonian system of 512 DMSO
molecules (502 representing the solvent, 10 representing the ground state) and 10 DMSO* excited

203

c⃝STFC Section 9.1

molecules. The mixing uses the error function method with λ = 0.25. The basic ensemble is pro-
vided by the Hoover NVT algorithm. The electrostatic interactions are handled by the reaction
field method.

9.1.1.36 Test Case 36. Calculation of Solvent Induced Spectral Shift

In this simulation 512 DMSO molecules are simulated in the Hoover NVT ensemble and at intervals
10 DMSO molecules are substituted by DMSO* molecules in the same configuration in order to
determine the instantaneous solvation energy of the DMSO*. The simulation immediately reverts
back to the groundstate DMSO to continue. The electrostatic interactions are handled by the
reaction field method.

9.1.1.37 Test Case 37. Calculation of Solvent Relaxation following Spectral Excita-
tion

This is a Hoover NVT simulation of 512 DMSO molecules in which, after a fixed interval, 10 DMSO
molecules are replaced by DMSO* and the subsequent simulation records the energetic response of
the solvent to the excitation. After another interval, the reverse switch is enacted and the DMSO*
molecules are replaced by DMSO, to determine the relaxation after quenching. The electrostatic
interactions are handled by the reaction field method.

9.1.1.38 Test Case 38. Freezing of TIP4P Water

This is a metadynamics simulation of the freezing of water at 180K and 1 atmosphere pressure using
a 4-centre TIP4P rigid model of the water molecule. The system consists of 512 water molecules
and the ensemble is Hoover NPT. Two order parameters are used to define the structures: global
potential energy and the Steinhardt Q6 parameter. Control of the Gaussian convergence is by
well-tempered dynamics.

9.1.1.39 Test Case 39: Calcite Nanoparticle Metadynamics

In this case 75 molecules of calcium carbonate in the calcite structure form a nanoparticle which is
suspended in 863 water molecules represented by a flexible 3-centre TIP3P model. The temperature
is 310K and pressure 1 atmosphere maintained in a Hoover NPT ensemble. The metadynamics
is controlled by 6 order parameters: the global potential energy and 5 Steinhardt Q4 parameters.
Gaussian convergence is controlled by well-tempered dynamics.

9.1.1.40 Test Case 40: Path Integral Simulation of Neon at 20K

This system consists of 256 Neon atoms with a (periodic) system volume of 7084.5 Å3 (corresponding
to a reduced density of ρ∗ ∼ 0.785) at a temperature of 20 K. Each atom is represented by a ring
of 10 beads. The simulation uses the gentle thermostat to handle thermalisation and maintain the
system temperature at 20 K. A relatively short time step of 0.0025 ps is used, which reflects the
difficulty of performing a stable and accurate simulation in systems of this kind.

9.1.1.41 Test Case 41: Path Integral Simulation of Water at 300K

This system is composed of 102 water molecules in a periodic system at a volume of 3711.28 Å3

(ρ = 0.82 g/ml) at a temperature of 300 K. Individual atoms are represented by a ring of 35 beads.
The water molecules are constructed from three charged atoms with harmonic O-H bonds and a
harmonic cosine valence angle potential for the H-O-H angle (equilibrium value 104.5o). The van

204

c⃝STFC Section 9.1

der Waals forces are 12-6 potentials. A short time step of 0.0001 ps is used. A chain of three
Nosé-Hoover thermostats is used in this case.

9.1.2 Benchmark Cases

These represent rather larger test cases for DL POLY Classic that are also suitable for benchmark-
ing the code on large scale computers. They have been selected to show fairly the the capabilities
and limitations of the code.

9.1.2.1 Benchmark 1

Simulation of metallic aluminium at 300K using a Sutton-Chen density dependent potential. The
system is comprised of 19652 identical atoms. The simulation runs on 16 to 512 processors only.

9.1.2.2 Benchmark 2

Simulation of a 15-peptide in 1247 water molecules. This was designed as an AMBER comparison.
The system consists of 3993 atoms in all and runs on 8-512 processors. It uses neutral group
electrostatics and rigid bond constraints and is one of the smallest benchmarks in the set.

9.1.2.3 Benchmark 3

Simulation of the enzyme transferrin in 8102 water molecules. The simulation makes use of neutral
group electrostatics and rigid bond constraints. The system is 27539 atoms and runs on 8-512
processors.

9.1.2.4 Benchmark 4

Simulation of a sodium chloride melt with Ewald sum electrostatics and a multiple timestep al-
gorithm to enhance performance. The system is comprised of 27000 atoms and runs on 8-512
processors.

9.1.2.5 Benchmark 5

Simulation of a sodium-potassium disilicate glass. Uses Ewald sum electrostatics, a multiple
timestep algorithm and a three-body valence angle potentials to support the silicate structure.
It also using tabluated two-body potentials stored in the file TABLE. The system is comprised of
8640 atoms and runs on 16-512 processors.

9.1.2.6 Benchmark 6

Simulation of a potassium-valinomycin complex in 1223 water molecules using an adapted AMBER
forcefield and truncated octahedral periodic boundary conditions. The system size is 3838 atoms
and runs on 16-512 processors.

9.1.2.7 Benchmark 7

Simulation of gramicidin A molecule in 4012 water molecules using neutral group electrostatics.
The system is comprised of 12390 atoms and runs on 8-512 processors. This example was provided
by Lewis Whitehead at the University of Southampton.

205

c⃝STFC Section 9.1

9.1.2.8 Benchmark 8

Simulation of an isolated magnesium oxide microcrystal comprised of 5416 atoms originally in the
shape of a truncated octahedron. Uses full coulombic potential. Runs on 16-512 processors.

9.1.2.9 Benchmark 9

Simulation of a model membrane with 196 41-unit membrane chains, 8 valinomycin molecules and
3144 water molecules using an adapted AMBER potential, multiple timestep algorithm and Ewald
sum electrostatics. The system is comprised of 18866 atoms and runs on 8-512 processors.

206

Chapter 10

Utilities

207

c⃝STFC Section 10.1

Scope of Chapter

This chapter describes the more important utility programs and subroutines of DL POLY Classic,
found in the sub-directory utility.

10.1 Miscellaneous Utilities

10.1.1 Useful Macros

10.1.1.1 Macros

Macros are simple executable files containing standard linux commands. A number of the are
supplied with DL POLY and are found in the execute sub-directory. The available macros are as
follows.

• cleanup

• copy

• gopoly

• gui

• select

• store

• supa

The function of each of these is described below. It is worth noting that most of these functions
can be performed by the DL POLY Classic java GUI [9]. (It may be necessary to set the execute
access to the macro using the linux command:
chmod -x macro
where macro is one of the above names.)

10.1.1.2 cleanup

cleanup removes several standard data files from the execute sub-directory. It contains the linux
commands:

#!/bin/tcsh

#

DL_POLY utility to clean up after a program run

#

if (-e CFGMIN) rm CFGMIN

if (-e OUTPUT) rm OUTPUT

if (-e RDFDAT) rm RDFDAT

if (-e REVCON) rm REVCON

if (-e REVIVE) rm REVIVE

if (-e REVOLD) rm REVOLD

if (-e STATIS) rm STATIS

if (-e ZDNDAT) rm ZDNDAT

and removes the files (if present) CFGMIN, OUTPUT, REVCON, REVOLD, STATIS, REVIVE,
RDFDAT and ZDNDAT. (Useful data should be stored elsewhere beforehand!)

208

c⃝STFC Section 10.1

10.1.1.3 copy

copy invokes the linux commands:

#!/bin/tcsh

#

utility to set up data for DL_POLY continuation run

#

mv CONFIG CONFIG.OLD

mv REVCON CONFIG

mv REVIVE REVOLD

which collectively prepare the DL POLY files in the execute sub-directory for the continuation of
a simulation. It is always a good idea to store these files elsewhere in addition to using this macro.

10.1.1.4 gopoly

gopoly is a simple script to submit a DL POLY job to a standard linux parallel machine.

mpirun -np $1 DLPOLY.X

Normally the job is submitted by the linux command:

gopoly 8

where (in this case) 8 specifies the use of 8 processors.
If the serial version of DL POLY is being used it is of course acceptable to simply type:

DLPOLY.X &

10.1.1.5 gui

gui is a macro that starts up the DL POLY Classic Java GUI. It invokes the following linux com-
mands:

java -jar ../java/GUI.jar

In other words the macro invokes the Java Virtual Machine which executes the instructions in
the Java archive file GUI.jar, which is stored in the java subdirectory of DL POLY Classic. (Note:
Java 1.3.0 or a higher version is required to run the GUI.)

10.1.1.6 select

select is a macro enabling easy selection of one of the test cases. It invokes the linux commands:

#!/bin/tcsh

#

DL_POLY utility to gather test data files for program run

#

cp ../data/TEST$1/$2/CONTROL CONTROL

cp ../data/TEST$1/$2/FIELD FIELD

cp ../data/TEST$1/$2/CONFIG CONFIG

209

c⃝STFC Section 10.1

if (-e ../data/TEST$1/$2/TABLE)then

cp ../data/TEST$1/$2/TABLE TABLE

else if (-e ../data/TEST$1/$2/TABEAM)then

cp ../data/TEST$1/$2/TABEAM TABEAM

endif

select requires two arguments to be specified:

select n a

where n is the (integer) test case number, which ranges from 1 to 20 and a is the character string
LF, VV, RB or CB according to which algorithm leapfrog (LF), velocity Verlet (VV), (RB) rigid
body minimisation or (CB) constraint bond minimisation is required.

This macro sets up the required input files in the execute sub-directory to run the n-th test
case.

10.1.1.7 store

The store macro provides a convenient way of moving data back from the execute sub-directory to
the data sub-directory. It invokes the linux commands:

#!/bin/tcsh

#

DL_POLY utility to archive I/O files to the data directory

#

if !(-e ../data/TEST$1) then

mkdir ../data/TEST$1

endif

if !(-e ../data/TEST$1/$2) then

mkdir ../data/TEST$1/$2

endif

mv CONTROL ../data/TEST$1/$2/CONTROL

mv FIELD ../data/TEST$1/$2/FIELD

mv CONFIG ../data/TEST$1/$2/CONFIG

mv OUTPUT ../data/TEST$1/$2/OUTPUT

mv REVIVE ../data/TEST$1/$2/REVIVE

mv REVCON ../data/TEST$1/$2/REVCON

if (-e TABLE) then

mv TABLE ../data/TEST$1/$2/TABLE

endif

if (-e TABEAM) then

mv TABEAM ../data/TEST$1/$2/TABEAM

endif

if (-e STATIS) then

mv STATIS ../data/TEST$1/$2/STATIS

endif

if (-e RDFDAT) then

mv RDFDAT ../data/TEST$1/$2/RDFDAT

endif

if (-e ZDNDAT) then

210

c⃝STFC Section 10.1

mv ZDNDAT ../data/TEST$1/$2/ZDNDAT

endif

if (-e CFGMIN) then

mv CFGMIN ../data/TEST$1/$2/CFGMIN

endif

which first creates a new DL POLY data/TEST.. sub-directory if necessary and then moves the
standard DL POLY output data files into it.

store requires two arguments:

store n a

where n is a unique string or number to label the output data in the data/TESTn sub-directory
and a is the character string LF, VV, RB or CB according to which algorithm leapfrog (LF), ve-
locity Verlet (VV), (RB) rigid body minimisation or (CB) constraint bond minimisation has been
performed.

10.1.1.8 supa

The supa macro provides a convenient way of running the DL POLY test cases in batch mode.
It is currently structured to submit batch jobs to the Daresbury Xeon cluster, but can easily be
adapted for other machines where batch queuing is possible. The key statement in this context in
the ‘qsub’ commmand which submits the gopoly script described above. This statement may be
replaced by the equivalent batch queuing command for your machine. The text of supa is given
below.

#!/bin/tcsh

#

DL_POLY script to run multiple test cases

note use of qsub in job submission - may

need replacing

#

set n=$1

set m=$2

set TYPE="LF VV CB RB"

while ($n <= $m)

if !(-e TEST$n) mkdir TEST$n

cd TEST$n

echo TEST$n

foreach typ ($TYPE)

if (-e ../../data/TEST$n/$typ) then

if !(-e $typ) mkdir $typ

cd $typ

cp ../../../data/TEST$n/$typ/CONTROL .

cp ../../../data/TEST$n/$typ/CONFIG .

cp ../../../data/TEST$n/$typ/FIELD .

if (-e ../../../data/TEST$n/$typ/TABLE) \

cp ../../../data/TEST$n/$typ/TABLE .

211

c⃝STFC Section 10.1

if(-e ../../../data/TEST$n/$typ/TABEAM) \

cp ../../../data/TEST$n/$typ/TABEAM .

qsub ../../gopoly

cd ../

endif

end

cd ../

set n=‘expr $n + 1‘

end

This macro creates working TEST directories in the execute sub-directory; one for each test case
invoked. Appropriate sub-directories of these are created for leapfrog (LF), velocity Verlet(VV),
rigid body minimisation (RB) and constraint bond minimisation (CB). Note that supa must be
run from the execute sub-directory.

supa requires two arguments:

supa n m

where n and m are integers defining the first and last test case to be run.

212

Bibliography

[1] Smith, W., and Forester, T., 1996, J. Molec. Graphics, 14, 136. 3

[2] Smith, W., 1987, Molecular Graphics, 5, 71. 3

[3] Finnis, M. W., and Sinclair, J. E., 1984, Philos. Mag. A, 50, 45. 4, 34, 35, 118, 119

[4] Johnson, R. A., 1989, Phys. Rev. B, 39, 12556. 4, 41

[5] Tersoff, J., 1989, Phys. Rev. B, 39, 5566. 4, 31, 120, 121

[6] van Gunsteren, W. F., and Berendsen, H. J. C. 1987, Groningen Molecular Simulation (GRO-
MOS) Library Manual. BIOMOS, Nijenborgh, 9747 Ag Groningen, The Netherlands. Standard
GROMOS reference. 4, 13

[7] Mayo, S., Olafson, B., and Goddard, W., 1990, J. Phys. Chem., 94, 8897. 4, 13, 30, 31, 119

[8] Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A., 1986, J. Comp. Chem., 7, 230.
4, 13

[9] Smith, W., 2003, Daresbury Laboratory. 5, 9, 83, 105, 199, 208

[10] online from http://www.ks.uiuc.edu/Research/vmd/, A. 5, 184

[11] online from https://www.projectaten.com/aten, A. 5

[12] Smith, W., and Forester, T. R., 1994, Comput. Phys. Commun., 79, 52. 5

[13] Smith, W., and Forester, T. R., 1994, Comput. Phys. Commun., 79, 63. 5, 58, 59

[14] Allen, M. P., and Tildesley, D. J. 1989, Computer Simulation of Liquids. Oxford: Clarendon
Press. 5, 14, 46, 54, 57, 59, 75, 76

[15] Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C., 1977, J. Comput. Phys., 23, 327. 5, 57,
75

[16] Andersen, H. C., 1983, J. Comput. Phys., 52, 24. 5, 58

[17] Fincham, D., 1992, Molecular Simulation, 8, 165. 5, 55, 69

[18] Miller, T., Eleftheriou, M., Pattnaik, P., Ndirango, A., Newns, D., and Martyna, G., 2002, J.
Chem. Phys., 116, 8649. 5, 56, 69, 70

[19] Forester, T., and Smith, W., 1998, J Computational Chemistry, 19, 102. 5, 55, 56, 71

[20] Martyna, G., Tuckerman, M., Tobias, D., and Klein, M., 1996, Molec. Phys., 87, 1117. 5, 60,
70

213

c⃝STFC Section 10.1

[21] Evans, D. J., and Morriss, G. P., 1984, Computer Physics Reports, 1, 297. 5, 55, 56, 59

[22] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W., DiNola, A., and Haak, J. R., 1984,
J. Chem. Phys., 81, 3684. 5, 55, 56, 59

[23] Hoover, W. G., 1985, Phys. Rev., A31, 1695. 5, 55, 56, 59

[24] Jorgensen, W. L., Madura, J. D., and Swenson, C. J., 1984, J. Amer. Chem. Soc, 106, 6638.
13

[25] Brode, S., and Ahlrichs, R., 1986, Comput. Phys. Commun., 42, 41. 14, 76

[26] Hockney, R. W., and Eastwood, J. W. 1981, Computer Simulation Using Particles. McGraw-
Hill International. 14, 15, 78

[27] Warner, H. R. J., 1972, ind. Eng. Chem. Fundam., 11, 379. 16

[28] Bird, R. B. e. a. 1977, Dynamics of Polymeric Liquids, volume 1 and 2. Wiley, New York. 16

[29] Grest, G. S., and Kremer, K., 1986, Phys. Rev. A, 33, 3628. 16

[30] Vessal, B., 1994, J. Non-Cryst. Solids, 177, 103. 18, 20, 30, 113, 119

[31] Smith, W., Greaves, G. N., and Gillan, M. J., 1995, J. Chem. Phys., 103, 3091. 18, 20, 31,
113, 119

[32] Smith, W., 1993, CCP5 Information Quarterly, 39, 14. 19, 22, 25

[33] Rohl, A. L., Wright, K., and Gale, J. D., 2003, Amer. Mineralogist, 88, 921. 25

[34] Clarke, J. H. R., Smith, W., and Woodcock, L. V., 1986, J. Chem. Phys., 84, 2290. 28, 118

[35] Weeks, J. D., Chandler, D., and Anderson, H. C., 1971, J. Chem. Phys., 54, 5237. 29

[36] Eastwood, J. W., Hockney, R. W., and Lawrence, D. N., 1980, Comput. Phys. Commun., 19,
215. 31, 33, 34

[37] Daw, M. S., and Baskes, M. I., 1984, Phys. Rev. B, 29, 6443. 34, 118

[38] Foiles, S. M., Baskes, M. I., and Daw, M. S., 1986, Chem. Phys. Lett., 33, 7983. 34, 118

[39] J., F., 1952, Philos. Mag., 43, 153. 34

[40] Sutton, A. P., and Chen, J., 1990, Philos. Mag. Lett., 61, 139. 35, 78, 119

[41] Rafii-Tabar, H., and Sutton, A. P., 1991, Philos. Mag. Lett., 63, 217. 35, 41, 119

[42] Todd, B., and Lynden-Bell, R., 1993, Surf. Science, 281, 191. 35

[43] Cleri, F., and Rosato, F., 1993, Phys. Rev. B, 48, 22. 35, 119

[44] Wolf, D., Keblinski, P., Phillpot, S., and Eggebrecht, J., 1999, J. Chem. Phys., 110, 8255. 45

[45] Fennell, C., and Gezelter, J., 2006, J. Chem. Phys., 124, 234104. 45

[46] Fuchs, K., 1935, Proc. R. Soc., A, 151, 585. 47

[47] Smith, W., and Fincham, D., 1993, Molecular Simulation, 10, 67. 47, 74, 75, 79, 90

214

c⃝STFC Section 10.1

[48] Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G., 1995, J.
Chem. Phys., 103, 8577. 48

[49] Hautman, J., and Klein, M. L., 1992, Molec. Phys., 75, 379. 50, 223

[50] Neumann, M., 1985, J. Chem. Phys., 82, 5663. 52

[51] Fincham, D., and Mitchell, P. J., 1993, J. Phys. Condens. Matter, 5, 1031. 53

[52] Lindan, P. J. D., and Gillan, M. J., 1993, J. Phys. Condens. Matter, 5, 1019. 54

[53] McCammon, J. A., and Harvey, S. C. 1987, Dynamics of Proteins and Nucleic Acids. Cam-
bridge: University Press. 59

[54] Brown, D., and Clarke, J. H. R., 1984, Molec. Phys., 51, 1243. 62

[55] Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, Molec. Phys., 78, 533. 63

[56] Tildesley, D. J., Streett, W. B., and Saville, G., l978, Molec. Phys, 35, 639. 74

[57] Tildesley, D. J., and Streett, W. B. Multiple time step methods and an improved poten-
tial function for molecular dynamics simulations of molecular liquids. In Lykos, P., editor,
Computer Modelling of Matter. ACS Symposium Series No. 86, 1978. 74

[58] Forester, T., and Smith, W., 1994, Molecular Simulation, 13, 195. 74

[59] Smith, W., 1991, Comput. Phys. Commun., 62, 229. 74, 75, 78

[60] Smith, W., 1993, Theoretica. Chim. Acta., 84, 385. 74, 75, 76

[61] Smith, W., 1992, Comput. Phys. Commun., 67, 392. 75, 77

[62] Vessal, B., Amini, M., Leslie, M., and Catlow, C. R. A., 1990, Molecular Simulation, 5, 1. 78

[63] Shewchuk, J. R. August 4, 1994, An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain, Edition 1 1/4. School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213. 88

[64] Voter, A., 1997, J. Chem. Phys., 106, 4665. 151, 153

[65] Sorensen, M., and Voter, A., 2000, J. Chem. Phys., 112, 9599. 151, 160, 162, 163

[66] Hamelberg, D., Mongan, J., and McCammon, J. A., 2004, J. Chem. Phys., 120, 11919. 151,
154, 155

[67] Henkelman, G., and Jonsson, H., 2000, J. Chem. Phys., 113, 9978. 152, 153

[68] Rahman, J. A., and Tully, J. C., 2002, J. Chem. Phys., 116, 8750. 155

[69] Laio, A., and Parrinello, M., 2002, Proc. Natl. Acad. Sci., 99, 12562. 176

[70] Quigley, D., and Rodger, P., 2009, Molecular Simulation, 35, 613. 176, 177, 178, 179, 180,
182, 183

[71] Laio, A., Rordiguez-Fortea, A., Gervasio, F. L., Ceccarelli, M., and Parrinello, M., 2005, J.
Phys. Chem. B, 109, 6714. 177, 180

[72] Peters, B., and Trout, B. L., 2006, J. Chem. Phys., 125, 054108. 177

215

c⃝STFC Section 10.1

[73] Donadio, D., Raiteri, P., and Parrinello, M., 2005, J. Phys. Chem. B, 109, 5421. 177

[74] Steinhardt, P. J., Nelson, D. R., and Ronchetti, M., 1983, Phys. Rev. B, 28, 784. 177, 178

[75] Chau, P. L., and Hardwick, A. J., 1998, Molec. Phys., 93, 511. 177, 179

[76] Feynmann, R., and Hibbs, A. 1965, Quantum Mechanics and Path Integrals. McGraw-Hill.
187

[77] Tuckerman, T. 2010, Statistical Mechanics: Theory and Molecular Simulation. Oxford Uni-
versity Press, New York. 187, 189

[78] Smith, W. 2014, Elements of Molecular Dynamics. Daresbury Laboratory, United Kingdom.
187, 188, 192

[79] Martyna, G., Klein, M., and Tuckerman, M., 1992, J. Chem. Phys., 97, 2635. 189

[80] Leimkuhler, B., Noorizadeh, E., and Thiel, F., 2009, J. Stat. Phys., 139, 261. 189, 192

[81] Herman, M., Bruskin, E., and Berne, B., 1982, J. Chem. Phys., 76, 6155. 189

[82] Tuckerman, M., Berne, B., Martyna, G., and Klein, M., 1993, J. Chem. Phys., 99, 2796. 190,
191

216

Appendix A

The DL POLY Classic Makefile

Master makefile for DL_POLY Classic

Author: W. Smith January Dec 2010

#

#===

Define default settings

#===

BINROOT = ../execute

CC = gcc

EX = DLPOLY.X

EXE = $(BINROOT)/$(EX)

FC=undefined

SHELL=/bin/sh

TYPE=par

#===

Define object files

OBJ_MOD = parse_module.o setup_module.o error_module.o \

site_module.o config_module.o pair_module.o utility_module.o \

metafreeze_module.o solvation_module.o tether_module.o \

vdw_module.o property_module.o rigid_body_module.o \

angles_module.o bonds_module.o shake_module.o \

inversion_module.o dihedral_module.o core_shell_module.o \

exclude_module.o ewald_module.o coulomb_module.o\

external_field_module.o four_body_module.o \

hkewald_module.o metal_module.o ensemble_tools_module.o \

temp_scalers_module.o three_body_module.o spme_module.o \

tersoff_module.o neu_coul_module.o \

nlist_builders_module.o forces_module.o \

lf_motion_module.o lf_rotation1_module.o \

lf_rotation2_module.o vv_motion_module.o \

vv_rotation1_module.o vv_rotation2_module.o \

pmf_module.o integrator_module.o optimiser_module.o \

hyper_dynamics_module.o driver_module.o \

define_system_module.o

217

c⃝STFC Section A.0

OBJ_SRC = dlpoly.o

OBJ_PAR = basic_comms.o merge_tools.o pass_tools.o

#===

Define targets

all:

@echo "Error - please specify a target machine!"

@echo "Permissible targets for this Makefile are:"

@echo " "

@echo "gfortran (parallel)"

@echo "woodcrest (parallel)"

@echo " "

@echo "Please examine Makefile for details"

system specific targets follow :

#================== GNU Fortran, MPI version ==============================

gfortran:

$(MAKE) FC="mpif90" LD="mpif90 -o" \

LDFLAGS="-O2 -ffast-math" \

FFLAGS="-c -O2 -ffast-math" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================= Woodcrest ===

woodcrest:

$(MAKE) LD="mpif90 -o" LDFLAGS="" \

FC=mpif90 FFLAGS="-c -O3" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#===

Default code for parallel (MPI) execution

par: check $(OBJ_MOD) $(OBJ_PAR) $(OBJ_SRC)

$(LD) $(EX) $(LDFLAGS) $(OBJ_MOD) $(OBJ_PAR) $(OBJ_SRC)

mv $(EX) $(EXE)

#===

Check that a machine has been specified

check:

@if test $(FC) = "undefined";\

then echo "You must specify a target machine!"; \

exit 99;\

fi

#===

Clean up the source directory

clean:

218

c⃝STFC Section A.0

rm -f $(OBJ_MOD) $(OBJ_PAR) $(OBJ_SRC) *.mod

#===

Declare dependencies

.f.o:

$(FC) $(FFLAGS) $*.f

.c.o:

$(CC) -c $*.c

#===

Declare dependency on module files

$(OBJ_SRC): $(OBJ_MOD)

219

Appendix B

Periodic Boundary Conditions in
DL POLY Classic

Introduction

DL POLY Classic is designed to accommodate a number of different periodic boundary conditions,
which are defined by the shape and size of the simulation cell. Briefly, these are as follows (which
also indicates the IMCON flag defining the simulation cell type in the CONFIG File - see 4.1.2):

1. None e.g. isolated polymer in space. (IMCON=0).

2. Cubic periodic boundaries.(IMCON=1).

3. Orthorhombic periodic boundaries.(IMCON=2).

4. Parallelepiped periodic boundaries.(IMCON=3).

5. Truncated octahedral periodic boundaries. (IMCON=4).

6. Rhombic dodecahedral periodic boundaries. (IMCON=5).

7. Slab (X,Y periodic, Z nonperiodic). (IMCON=6).

8. Hexagonal prism periodic boundaries. (IMCON=7).

We shall now look at each of these in more detail. Note that in all cases the cell vectors and
the positions of the atoms in the cell are to be specified in Angstroms (Å).

No periodic boundary (IMCON=0)

Simulations requiring no periodic boundaries are best suited to in vacuuo simulations, such as
the conformational study of an isolated polymer molecule. This boundary condition is not recom-
mended for studies in a solvent, since evaporation is likely to be a problem.

Note this boundary condition cannot be used with the Ewald summation method.

Cubic periodic boundaries (IMCON=1)

The cubic MD cell is perhaps the most commonly used in simulation and has the advantage of
great simplicity. In DL POLY Classic the cell is defined with the principle axes passing through
the centres of the faces. Thus for a cube with sidelength D, the cell vectors appearing in the
CONFIG file should be: (D,0,0); (0,D,0); (0,0,D). Note the origin of the atomic coordinates is the
centre of the cell.

The cubic boundary condition can be used with the Ewald summation method.

220

c⃝STFC Section B.0

Figure B.1: The cubic MD cell.

Orthorhombic periodic boundaries (IMCON=2)

The orthorhombic cell is also a common periodic boundary, which closely resembles the cubic cell
in use. In DL POLY Classic the cell is defined with principle axes passing through the centres of
the faces. For an orthorhombic cell with sidelengths D (in X-direction), E (in Y-direction) and F
(in Z-direction), the cell vectors appearing in the CONFIG file should be: (D,0,0); (0,E,0); (0,0,F).
Note the origin of the atomic coordinates is the centre of the cell.

The orthorhombic boundary condition can be used with the Ewald summation method.

Figure B.2: The orthorhomic MD cell.

Parallelepiped periodic boundaries (IMCON=3)

The parallelepiped (e.g. monoclinic or triclinic) cell is generally used in simulations of crystalline
materials, where its shape and dimension is commensurate with the unit cell of the crystal. Thus for
a unit cell specified by three principal vectors a, b, c, the MD cell is defined in the DL POLY Classic
CONFIG file by the vectors (La1,La2,La3), (Mb1,Mb2,Mb3), (Nc1,Mc2,Nc3), in which L,M,N are
integers, reflecting the multiplication of the unit cell in each principal direction. Note that the
atomic coordinate origin is the centre of the MD cell.

The parallelepiped boundary condition can be used with the Ewald summation method.

221

c⃝STFC Section B.0

Figure B.3: The parallelepiped MD cell.

Figure B.4: The truncated octahedral MD cell.

Truncated octahedral boundaries (IMCON=4)

This is one of the more unusual MD cells available in DL POLY, but it has the advantage of being
more nearly spherical than most other MD cells. This means it can accommodate a larger spherical
cutoff for a given number of atoms, which leads to greater efficiency. This can be very useful when
simulating (for example) a large molecule in solution, where fewer solvent molecules are required
for a given simulation cell width.

The principal axes of the truncated octahedron (see figure) pass through the centres of the
square faces, and the width of the cell, measured from square face to square face along a principal
axis defines the width D of the cell. From this, the cell vectors required in the DL POLY Classic
CONFIG file are simply: (D,0,0), (0,D,0), (0,0,D). These are also the cell vectors defining the
enscribing cube, which posseses twice the volume of the truncated octahedral cell. Once again, the
atomic positions are defined with respect to the cell centre.

The truncated octahedron can be used with the Ewald summation method.

Rhombic dodecahedral boundaries (IMCON=5)

This is another unusual MD cell (see figure), but which possesses similar advantages to the truncated
octahedron, but with a slightly greater efficiency in its use of the cell volume (the ratio is about
74% to 68%).

The principal axis in the X-direction of the rhombic dodecahedron passes through the centre of

222

c⃝STFC Section B.0

the cell and the centre of a rhombic face. The Y-axis does likewise, but is set at 90 degrees to the X-
axis. The Z-axis completes the orthonormal set and passes through a vertex where four faces meet.
If the width D of the cell is defined as the perpendicular distance between two opposite faces, the cell
vectors required for the DL POLY Classic CONFIG file are: (D,0,0), (0,D,0), (0,0,

√
2D).These also

define the enscribing orthorhombic cell, which has twice the MD cell volume. In DL POLY Classic
the centre of the cell is also the origin of the atomic coordinates.

The rhombic dodecahedron can be used with the Ewald summation method.

Figure B.5: The rhombic dodecahedral MD cell.

Slab boundary conditions (IMCON=6)

Slab boundaries are periodic in the X- and Y-directions, but not in the Z-direction. They are
particularly useful for simulating surfaces. The periodic cell in the XY plane can be any parallel-
ogram. The origin of the X,Y atomic coordinates lies on an axis perpendicular to the centre of
the parallelogram. The origin of the Z coordinate is where the user specifies it, but at or near the
surface is recommended.

If the XY parallelogram is defined by vectors A and B, the vectors required in the CONFIG file
are: (A1,A2,0), (B1,B2,0), (0,0,D), where D is any real number (including zero). If D is nonzero,
it will be used by DL POLY to help determine a ‘working volume’ for the system. This is needed
to help calculate RDFs etc. (The working value of D is in fact taken as one of: 3×cutoff; or
2×max abs(Z coordinate)+cutoff; or the user specified D, whichever is the larger.)

Note that the standard Ewald sum cannot be used with this boundary condition. DL POLY Classic
switches automatically to the Hautman-Klein-Ewald method instead [49].

The surface in a system with charges can also be modelled with DL POLY Classic if periodicity
is allowed in the Z-direction. In this case slabs of ions well-separated by vacuum zones in the
Z-direction can be handled with IMCON=2 or 3.

Hexagonal prism boundaries (IMCON=7)

In this case the Z-axis lies along a line joining the centres of the hexagonal faces. The Y-axis is
perpendicular to this and passes through the centre of one of the faces. The X-axis completes the
orthonormal set and passes through the centre of an edge that is parallel to the Z-axis. (Note: It
is important to get this convention right!) The origin of the atomic coordinates is the centre of the
cell. If the length of one of the hexagon edges is D, the cell vectors required in the CONFIG file are:
(3D,0,0), (0,

√
3D,0), (0,0,H), where H is the prism height (the distance between hexagonal faces).

223

c⃝STFC Section B.0

The orthorhombic cell also defined by these vectors enscribes the hexagonal prism and possesses
twice the volume, but the height and the centre are the same.

The Ewald summation method may be used with this periodic boundary condition.

Figure B.6: The hexagonal MD cell.

This MD cell is particularly suitable for simulating strands or fibres (i.e. systems with a pro-
nounced anisotropy in the Z-direction), such as DNA strands in solution, or stretched polymer
chains.

224

Appendix C

Error Messages and User Action

Introduction

In this appendix we document the error messages encoded in DL POLY Classic and the recom-
mended user action. The correct response is described as the standard user response in the
approriate sections below, to which the user should refer before acting on the error encountered.

The reader should also be aware that some of the error messages listed below may be either
disabled in, or absent from, the installed version of DL POLY Classic. Disabled messages generally
apply to older releases of the code, while absent messages apply to newer versions of the code and
will not usually apply to previous releases. They are all included for completeness. Note that the
wording of some of the messages may also have changed over time, usually to provide more specific
information. The most recent wording appears below.

DL POLY Classic incorporates FORTRAN 90 dynamic array allocation to set the array sizes at
run time. It is not foolproof however. Sometimes an estimate of the required array sizes is difficult
to obtain and the calculated value may be too small. For this reason DL POLY Classic retains a
number of array dimension checks and will terminate when an array bound error occurs.

When a dimension error occurs, the standard user response is to edit the DL POLY Classic
subroutine parset.f. Locate where the variable defining the array dimension is fixed and increase
accordingly. To do this you should make use of the dimension information that DL POLY Classic
prints in the OUTPUT file prior to termination. If no information is supplied, simply doubling
the size of the variable will usually do the trick. If the variable concerned is defined in one of
the support subroutines cfgscan.f, fldscan.f, conscan.f you will need to insert a new line
in parset.f to redefine it - after the relevant subroutine has been called! Finally the code must
be recompiled, but in this case it will be necessary only to recompile parset.f and not the whole
code.

The DL POLY Classic Error Messages

Message 3: error - unknown directive found in CONTROL file

This error most likely arises when a directive is misspelt.

Action:
Locate incorrect directive in CONTROL file and replace.

Message 4: error - unknown directive found in FIELD file

This error most likely arises when a directive is misspelt or is encountered in an incorrect location
in the FIELD file, which can happen if too few or too many data records are included.

225

c⃝STFC Section C.0

Action:
Locate the erroneous directive in the FIELD file and correct error.

Message 5: error - unknown energy unit requested

The DL POLY Classic FIELD file permits a choice of units for input of energy parameters. These
may be: electron volts (ev); kilocalories (kcal); kilojoules (kj); or the DL POLY Classic internal
units (10 J mol−1) (internal). There is no default value. Failure to specify any of these correctly,
or reference to other energy units, will result in this error message. See documentation of the
FIELD file.

Action:
Correct energy keyword on units directive in FIELD file and resubmit.

Message 6: error - energy unit not specified

A units directive is mandatory in the FIELD file. This error indicates that DL POLY Classic
has failed to find the required record.

Action:
Add units directive to FIELD file and resubmit.

Message 7: error - energy unit respecified

DL POLY Classic expects only one units directive in the FIELD file. This error results if it en-
counters another - implying an ambiguity in units.

Action:
Locate extra units directive in FIELD file and remove.

Message 8: error - time step not specified

DL POLY Classic requires a timestep directive in the CONTROL file. This error results if none
is encountered.

Action:
Inserttimestep directive in CONTROL file with an appropriate numerical value.

Message 10: error - too many molecule types specified

DL POLY Classic has a set limit on the number of kinds of molecules it will handle in any simu-
lation (this is not the same as the number of molecules). If this permitted maximum is exceeded,
the program terminates. The error arises when the molecules directive in the FIELD file specifes
too large a number.

Action:
Standard user response. Fix parameter mxtmls.

226

c⃝STFC Section C.0

Message 11: error - duplicate molecule directive in FIELD file

The number of different types of molecules in a simulation should only be specified once. If
DL POLY Classic encounters more than one molecules directive, it will terminate execution.

Action:
Locate the extra molecule directive in the FIELD file and remove.

Message 12: error - unknown molecule directive in FIELD file

Once DL POLY Classic encounters the molecules directive in the FIELD file, it assumes the fol-
lowing records will supply data describing the intramolecular force field. It does not then expect
to encounter directives not related to these data. This error message results if it encounters a
unrelated directive. The most probable cause is incomplete specification of the data (e.g. when the
finish directive has been omitted.)

Action:
Check the molecular data entries in the FIELD file and correct.

Message 13: error - molecule species not yet specified

This error arises when DL POLY Classic encounters non-bonded force data in the FIELD file, be-
fore the molecular species have been specified. Under these circumstances it cannot assign the data
correctly, and therefore terminates.

Action:
Make sure the molecular data appears before the non-bonded forces data in the FIELD file and
resubmit.

Message 14: error - too many unique atom types specified

This error arises when DL POLY Classic scans the FIELD file and discovers that there are too
many different types of atoms in the system (i.e. the number of unique atom types exceeds the
mxsvdw parameter.

Action:
Standard user response. Fix parameter mxsvdw.

Message 15: error - duplicate pair potential specified

In processing the FIELD file, DL POLY Classic keeps a record of the specified short range pair
potentials as they are read in. If it detects that a given pair potential has been specified before, no
attempt at a resolution of the ambiguity is made and this error message results. See specification
of FIELD file.

Action:
Locate the duplication in the FIELD file and rectify.

Message 16: error - strange exit from FIELD file processing

This should never happen! However one remote possibility is that there are more than 10,000
directives in the FIELD file! It simply means that DL POLY Classic has ceased processing the

227

c⃝STFC Section C.0

FIELD data, but has not reached the end of the file or encountered a close directive. Probable
cause: corruption of the DL POLY Classic executable or of the FIELD file. We would be interested
to hear of other reasons!

Action:
Recompile the program or recreate the FIELD file. If neither of these works, send the problem to
us.

Message 17: error - strange exit from CONTROL file processing

See notes on message 16 above.

Message 18: error - duplicate 3-body potential specified

DL POLY Classic has encountered a repeat specification of a 3-body potential in the FIELD file.

Action:
Locate the duplicate entry, remove and resubmit job.

Message 19: error - duplicate 4-body potential specified

A 4-body potential has been duplicated in the FIELD file.

Action:
Locate the duplicated 4-body potential and remove. Resubmit job.

Message 20: error - too many molecule sites specified

DL POLY Classic has a fixed limit on the number of unique molecular sites in any given simulation.
If this limit is exceeded, the program terminates.

Action:
Standard user response. Fix parameter mxsite.

Message 21: error - duplicate tersoff potential specified

The user has defined more than one Tersoff potential for a given pair of atoms types.
Action:
Locate the duplication in the FIELD file and correct.

Message 22: error - unsuitable radial increment in TABLE file

This arises when the tabulated potentials presented in the TABLE file have an increment that
is greater than that used to define the other potentials in the simulation. Ideally the increment
should be r cut/(mxgrid−4), where r cut is the potential cutoff for the short range potentials and
mxgrid is the parameter defining the length of the interpolation arrays. An increment less than
this is permissible however.

Action:
The tables must be recalculated with an appropriate increment.

228

c⃝STFC Section C.0

Message 23: error - incompatible FIELD and TABLE file potentials

This error arises when the specification of the short range potentials is different in the FIELD
and TABLE files. This usually means that the order of specification of the potentials is different.
When DL POLY Classic finds a change in the order of specification, it assumes that the user has
forgotten to enter one.

Action:
Check the FIELD and TABLE files. Make sure that you correctly specify the pair potentials in the
FIELD file, indicating which ones are to be presented in the TABLE file. Then check the TABLE
file to make sure all the tabulated potentials are present in the order the FIELD file indicates.

Message 24: error - end of file encountered in TABLE file

This means the TABLE file is incomplete in some way: either by having too few potentials included,
or the number of data points is incorrect.

Action:
Examine the TABLE file contents and regenerate it if it appears to be incomplete. If it look intact,
check that the number of data points specified is what DL POLY Classic is expecting.

Message 25: error - wrong atom type found in CONFIG file

On reading the input file CONFIG, DL POLY Classic performs a check to ensure that the atoms
specified in the configuration provided are compatible with the corresponding FIELD file. This
message results if they are not.

Action:
The possibility exists that one or both of the CONFIG or FIELD files has incorrectly specified the
atoms in the system. The user must locate the ambiguity, using the data printed in the OUTPUT
file as a guide, and make the appropriate alteration.

Message 26: error - cutoff smaller than EAM potential range

DL POLY Classic has detected an inconsistency in the definition of the EAM potential, namely
that the user is not using the correct potential range.
Action:
Look up the correct range for this potential and adjust the DL POLY cutoff accordingly.

Message 27: error - incompatible FIELD and TABEAM file potentials

The user has (or has not) specified a set of EAM potentials in the FIELD file which are not (or
are) available in the TABEAM file.
Action:
Examine the FIELD file. Make sure you have correctly specified the EAM potentials. Check that
these appear in the TABEAM file if required.

Message 28: error - transfer buffer too small in mettab

The number of points specifying an EAM potential in the TABEAM file exceeds the default buffer
size in mettab.f.

229

c⃝STFC Section C.0

Action:
Reset the mxbuff parameter in parset.f subroutine to accommodate the required array length
and recompile.

Message 29: error - end of file encountered in TABEAM file

DL POLY Classic has reached the end of the TABEAM file without finding all the data it expects.
Action:
Either the TABEAM file is incomplete or it is improperly defined. Check the structure and content
of the file with the TABEAM file specification in the manual and fix the error.

Message 30: error - too many chemical bonds specified

DL POLY Classic sets a limit on the number of chemical bond potentials that can be specified in
the FIELD file. Termination results if this number is exceeded. See FIELD file documentation. Do
not confuse this error with that described by message 31 (below).

Action:
Standard user response. Fix parameter mxtbnd.

Message 31: error - too many chemical bonds in system

DL POLY Classic sets a limit on the number of chemical bond potentials in the simulated system
as a whole. (This number is a combination of the number of molecules and the number of bonds
per molecule, divided by the number of processing nodes.) Termination results if this number is
exceeded. Do not confuse this error with that described by message 30 (above).

Action:
Standard user response. Fix the parameter mxbond.

Message 32: error - integer array memory allocation failure

DL POLY Classic has failed to allocate sufficient memory to accommodate one or more of the in-
teger arrays in the code.

Action:
This may simply mean that your simulation is too large for the machine you are running on.
Consider this before wasting time trying a fix. Try using more processing nodes if they are available.
If this is not an option investigate the possibility of increasing the heap size for your application.
Talk to your systems support people for advice on how to do this.

Message 33: error - real array memory allocation failure

DL POLY Classic has failed to allocate sufficient memory to accommodate one or more of the real
arrays in the code.

Action:
This may simply mean that your simulation is too large for the machine you are running on.
Consider this before wasting time trying a fix. Try using more processing nodes if they are available.
If this is not an option investigate the possibility of increasing the heap size for your application.
Talk to your systems support people for advice on how to do this.

230

c⃝STFC Section C.0

Message 34: error - character array memory allocation failure

DL POLY Classic has failed to allocate sufficient memory to accommodate one or more of the
character arrays in the code.

Action:
This may simply mean that your simulation is too large for the machine you are running on.
Consider this before wasting time trying a fix. Try using more processing nodes if they are available.
If this is not an option investigate the possibility of increasing the heap size for your application.
Talk to your systems support people for advice on how to do this.

Message 35: error - logical array memory allocation failure

DL POLY Classic has failed to allocate sufficient memory to accommodate one or more of the log-
ical arrays in the code.

Action:
This may simply mean that your simulation is too large for the machine you are running on.
Consider this before wasting time trying a fix. Try using more processing nodes if they are available.
If this is not an option investigate the possibility of increasing the heap size for your application.
Talk to your systems support people for advice on how to do this.

Message 36: error - failed fmet array allocation in mettab

DL POLY Classic is unable to allocate the fmet array in the definition of an EAM potential.
Action:
Most probable cause is working too near the memory limit for the machine. Try using more
processors to free up some memory. Check the TABEAM file in case the data are incorrectly
specified.

Message 40: error - too many bond constraints specified

DL POLY Classic sets a limit on the number of bond constraints that can be specified in the FIELD
file. Termination results if this number is exceeded. See FIELD file documentation. Do not confuse
this error with that described by message 41 (below).

Action:
Standard user response. Fix the parameter mxtcon.

Message 41: error - too many bond constraints in system

DL POLY Classic sets a limit on the number of bond constraints in the simulated system as a
whole. (This number is a combination of the number of molecules and the number of per molecule,
divided by the number of processing nodes.) Termination results if this number is exceeded. Do
not confuse this error with that described by message 40 (above).

Action:
Standard user response. Fix the parameter mxcons.

231

c⃝STFC Section C.0

Message 42: error - transfer buffer too small in merge1

The buffer used to transfer data between nodes in the merge1 subroutines has been dimensioned
too small.

Action:
Standard user response. Fix the parameter mxbuff.

Message 45: error - too many atoms in CONFIG file

DL POLY Classic limits the number of atoms in the system to be simulated and checks for the
violation of this condition when it reads the CONFIG file. Termination will result if the condition
is violated.
Action:
Standard user response. Fix the parameter mxatms. Consider the possibility that the wrong
CONFIG file is being used (e.g similar system, but larger size.)

Message 46: error - ewlbuf array too small in ewald1

The ewlbuf array used to store structure factor data in subroutine ewald1 has been dimensioned
too small.

Action:
Standard user response. Fix the parameter mxebuf.

Message 47: error - transfer buffer too small in merge

The buffer used to transfer data between nodes in the merge subroutines has been dimensioned
too small.

Action:
Standard user response. Fix the parameter mxbuff.

Message 48: error - transfer buffer too small in fortab

The buffer used to transfer data between nodes in the fortab subroutines has been dimensioned
too small.

Action:
Standard user response. Fix the parameter mxbuff.

Message 49: error - frozen core-shell unit specified

The DL POLY Classic option to freeze the location of an atom (i.e. hold it permanently in one posi-
tion) is not permitted for core-shell units. This includes freezing the core or the shell independently.

Action:
Remove the frozen atom option from the FIELD file. Consider using a non-polarisable atom instead.

232

c⃝STFC Section C.0

Message 50: error - too many bond angles specified

DL POLY Classic limits the number of valence angle potentials that can be specified in the FIELD
file and checks for the violation of this. Termination will result if the condition is violated. Do not
confuse this error with that described by message 51 (below).

Action:
Standard user response. Fix the parameter mxtang.

Message 51: error - too many bond angles in system

DL POLY Classic limits the number of valence angle potentials in the system to be simulated (ac-
tually, the number to be processed by each node) and checks for the violation of this. Termination
will result if the condition is violated. Do not confuse this error with that described by message 50
(above).

Action:
Standard user response. Fix the parameter mxangl. Consider the possibility that the wrong
CONFIG file is being used (e.g similar system, but larger size.)

Message 52: error - end of FIELD file encountered

This message results when DL POLY Classic reaches the end of the FIELD file, without having
read all the data it expects. Probable causes: missing data or incorrect specification of integers on
the various directives.

Action:
Check FIELD file for missing or incorrect data and correct.

Message 53: error - end of CONTROL file encountered

This message results when DL POLY Classic reaches the end of the CONTROL file, without hav-
ing read all the data it expects. Probable cause: missing finish directive.

Action:
Check CONTROL file and correct.

Message 54: error - problem reading CONFIG file

This message results when DL POLY Classic encounters a problem reading the CONFIG file. Pos-
sible cause: corrupt data.

Action:
Check CONFIG file and correct.

Message 55: error - end of CONFIG file encountered

This error arises when DL POLY Classic attempts to read more data from the CONFIG file than
is actually present. The probable cause is an incorrect or absent CONFIG file, but it may be due
to the FIELD file being incompatible in some way with the CONFIG file.

233

c⃝STFC Section C.0

Action:
Check contents of CONFIG file. If you are convinced it is correct, check the FIELD file for
inconsistencies.

Message 57: error - too many core-shell units specified

DL POLY Classic has a restriction of the number of types of core-shell unit in the FIELD file and
will terminate if too many are present. Do not confuse this error with that described by message
59 (below).

Action:
Standard user response. Fix the parameter mxtshl.

Message 59: error - too many core-shell units in system

DL POLY Classic limits the number of core-shell units in the simulated system. Termination re-
sults if too many are encountered. Do not confuse this error with that described by message 57
(above).

Action:
Standard user response. Fix the parameter mxshl.

Message 60: error - too many dihedral angles specified

DL POLY Classic will accept only a limited number of dihedral angles in the FIELD file and will
terminate if too many are present. Do not confuse this error with that described by message 61
(below).

Action:
Standard user response. Fix the parameter mxtdih.

Message 61: error - too many dihedral angles in system

The number of dihedral angles in the whole simulated system is limited by DL POLY Classic. Ter-
mination results if too many are encountered. Do not confuse this error with that described by
message 60 (above).

Action:
Standard user response. Fix the parameter mxdihd.

Message 62: error - too many tethered atoms specified

DL POLY Classic will accept only a limited number of tethered atoms in the FIELD file and will
terminate if too many are present. Do not confuse this error with that described by message 63
(below).

Action:
Standard user response. Fix the parameter mxteth.

234

c⃝STFC Section C.0

Message 63: error - too many tethered atoms in system

The number of tethered atoms in the simulated system is limited by DL POLY Classic. Termina-
tion results if too many are encountered. Do not confuse this error with that described by message
62 (above).

Action:
Standard user response. Fix the parameter msteth.

Message 65: error - too many excluded pairs specified

This error can arise when DL POLY Classic is identifying the atom pairs that cannot have a pair po-
tential between them, by virtue of being chemically bonded for example (see subroutine exclude).
Some of the working arrays used in this operation may be exceeded, resulting in termination of the
program.

Action:
Standard user response. Fix the parameter mxexcl.

Message 66: error - incorrect boundary condition for HK ewald

The Hautman-Klein Ewald method can only be used with XY planar periodic boundary conditions
(i.e. imcon = 6).

Action:
Either the periodic boundary condition, or the choice of calculation of the electrostatic forces must
be changed.

Message 67: error - incorrect boundary condition in thbfrc

Three body forces in DL POLY Classic are only permissible with cubic, orthorhombic and paral-
lelepiped periodic boundaries. Use of other boundary conditions results in this error.

Action:
If nonperiodic boundaries are required, the only option is to use a very large simulation cell, with
the required system at the centre surrounded by a vacuum. This is not very efficient however and
use of a realistic periodic system is the best option.

Message 69: error - too many link cells required in thbfrc

The calculation of three body forces in DL POLY Classic is handled by the link cell algorithm.
This error arises if the required number of link cells exceeds the permitted array dimension in the
code.

Action:
Standard user response. Fix the parameter mxcell.

Message 70: error - constraint bond quench failure

When a simulation with bond constraints is started, DL POLY Classic attempts to extract the
kinetic energy of the constrained atom-atom bonds arising from the assignment of initial random

235

c⃝STFC Section C.0

velocities. If this procedure fails, the program will terminate. The likely cause is a badly generated
initial configuration.

Action:
Some help may be gained from increasing the cycle limit, by following the standard user response
to increase the control parameter mxshak. You may also consider reducing the tolerance of the
SHAKE iteration, the directive shake in the CONTROL file. However it is probably better to take
a good look at the starting conditions!

Message 71: error - too many metal potentials specified

The number of metal potentials that can be specfied in the FIELD file is limited. This error results
if too many are used.

Action:
Standard user response. Fix the parameter mxvdw. Note that this parameter must be double the
number of required metal potentials. Recompile the program.

Message 72: error - different metal potential types specified

DL POLY Classic does not permit the user to mix different types of metal potential in the same
simulation. There are no known rules for making alloys in this way.
Action:
Change the FIELD (and TABEAM) file as required so that only one type of metal potential is
used.

Message 73: error - too many inversion potentials specified

The number of inversion potentials specified in the FIELD file exceeds the permitted maximum.

Action:
Standard user response. Fix the parameter mxtinv.

Message 74: error - work array allocation failed in minimiser

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 75: error - too many atoms in specified system

DL POLY Classic places a limit on the number of atoms that can be simulated. Termination re-
sults if too many are specified.

Action:
Standard user response. Fix the parameter mxatms.

236

c⃝STFC Section C.0

Message 77: error - too many inversion potentials in system

The simulation contains too many inversion potentials overall, causing termination of run.

Action:
Standard user response. Fix the parameter mxinv.

Message 79: error - incorrect boundary condition in fbpfrc

The 4-body force routine assumes a cubic or parallelepiped periodic boundary condition is in op-
eration. The job will terminate if this is not adhered to.

Action:
You must reconfigure your simulation to an appropriate boundary condition.

Message 80: error - too many pair potentials specified

DL POLY Classic places a limit on the number of pair potentials that can be specified in the FIELD
file. Exceeding this number results in termination of the program execution.

Action:
Standard user response. Fix the parameters mxsvdw. and mxvdw.

Message 81: error - unidentified atom in pair potential list

DL POLY Classic checks all the pair potentials specified in the FIELD file and terminates the
program if it can’t identify any one of them from the atom types specified earlier in the file.

Action:
Correct the erroneous entry in the FIELD file and resubmit.

Message 82: error - calculated pair potential index too large

In checking the pair potentials specified in the FIELD file DL POLY Classic calculates a unique
integer index that henceforth identifies the potential within the program. If this index becomes too
large, termination of the program results.

Action:
Standard user response. Fix the parameters mxsvdw and mxvdw.

Message 83: error - too many three body potentials specified

DL POLY Classic has a limit on the number of three body potentials that can be defined in the
FIELD file. This error results if too many are included.

Action:
Standard user response. Fix the parameter mxtbp.

237

c⃝STFC Section C.0

Message 84: error - unidentified atom in 3-body potential list

DL POLY Classic checks all the 3-body potentials specified in the FIELD file and terminates the
program if it can’t identify any one of them from the atom types specified earlier in the file.

Action:
Correct the erroneous entry in the FIELD file and resubmit.

Message 85: error - required velocities not in CONFIG file

If the user attempts to start up a DL POLY Classic simulation with the restart or restart scale
directives (see description of CONTROL file,) the program will expect the CONFIG file to contain
atomic velocities as well as positions. Termination results if these are not present.

Action:
Either replace the CONFIG file with one containing the velocities, or if not available, remove the
restart directive altogether and let DL POLY Classic create the velocities for itself.

Message 86: error - calculated 3-body potential index too large

DL POLY Classic has a permitted maximum for the calculated index for any three body potential
in the system (i.e. as defined in the FIELD file). If there are m distinct types of atom in the
system, the index can possibly range from 1 to (m2 ∗ (m− 1))/2. If the internally calculated index
exceeds this number, this error report results.

Action:
Standard user response. Fix the parameter mxtbp.

Message 87: error - too many link cells required in fbpfrc

The fbpfrc subroutine uses link cells to compute the four body forces. This message indicates
that the link cell arrays have insufficient size to work properly.

Action:
Standard user response. Fix the parameter mxcell.

Message 88: error - too many tersoff potentials specified

Too many Tersoff potentials have been defined in the FIELD file. Certain arrays must be increased
in size to accommodate the data.

Action:
Standard user response. Fix the parameter mxter.

Message 89: error - too many four body potentials specified

Too many four body potential have been defined in the FIELD file. Certain arrays must be in-
creased in size to accommodate the data.

Action:
Standard user response. Fix the parameter mxfbp.

238

c⃝STFC Section C.0

Message 90: error - system total electric charge nonzero

In DL POLY Classic a check on the total system charge will result in an error if the net charge of
the system is nonzero. (Note: In DL POLY Classic this message has been disabled. The program
merely prints a warning stating that the system is not electrically neutral but it does not terminate
the program - watch out for this.)

Action:
Check the specified atomic charges and their populations. Make sure they add up to zero. If
the system is required to have a net zero charge, you can enable the call to this error message in
subroutine sysdef.

Message 91: error - unidentified atom in 4-body potential list

The specification of a four-body potential in the FIELD file has referenced an atom type that is
unknown.

Action:
Locate the erroneous atom type in the four body potential definition in the FIELD file and correct.
Make sure this atom type is specified by an atoms directive earlier in the file.

Message 92: error - unidentified atom in tersoff potential list

The specification of a Tersoff potential in the FIELD file has referenced an atom type that is un-
known.

Action:
Locate the erroneous atom type in the Tersoff potential definition in the FIELD file and correct.
Make sure this atom type is specified by an atoms directive earlier in the file.

Message 93: error - cannot use shell model with rigid molecules

The dynamical shell model implemented in DL POLY Classic is not designed to work with rigid
molecules. This error results if these two options are simultaneously selected.

Action:
In some circumstances you may consider overriding this error message and continuing with your
simulation. For example if your simulation does not require the polarisability to be a feature of the
rigid species, but is confined to free atoms or flexible molecules in the same system. The appropriate
error trap is found in subroutine sysdef.

Message 95: error - potential cutoff exceeds half cell width

In order for the minimum image convention to work correctly within DL POLY Classic, it is neces-
sary to ensure that the cutoff applied to the pair potentials does not exceed half the perpendicular
width of the simulation cell. (The perpendicular width is the shortest distance between opposing
cell faces.) Termination results if this is detected. In NVE simulations this can only happen at the
start of a simulation, but in NPT, it may occur at any time.

Action:
Supply a cutoff that is less than half the cell width. If running constant pressure calculations, use

239

c⃝STFC Section C.0

a cutoff that will accommodate the fluctuations in the simulation cell. Study the fluctuations in
the OUTPUT file to help you with this.

Message 97: error - cannot use shell model with neutral groups

The dynamical shell model was not designed to work with neutral groups. This error results if an
attempt is made to combine both.

Action:
There is no general remedy for this error if you wish to combine both these capabilities. However if
your simulation does not require the polarisability to be a feature of rigid species (comprising the
charged groups), but is confined to free atoms or flexible molecules in the same system, you may
consider overriding this error message and continuing with your simulation. The appropriate error
trap is found in subroutine sysdef.

Message 99: error - cannot use shell model with constraints

The dynamical shell model was not designed to work in conjunction with constraint bonds. This
error results if both are used in the same simulation.

Action: There is no general remedy if you wish to combine both these capabilities. However if
your simulation does not require the polarisability to be a feature of the constrained species, but
is confined to free atoms or flexible molecules, you may consider overriding this error message and
continuing with your simulation. The appropriate error trap is in subroutine sysdef.

Message 100: error - forces working arrays too small

There are a number of arrays in DL POLY Classic that function as workspace for the forces cal-
culations. Their dimension is equal to the number of atoms in the simulation cell divided by the
number of nodes. If these arrays are likely to be exceeded, DL POLY Classic will terminate exe-
cution.

Action:
Standard user response. Fix the parameter msatms.

Message 101: error - calculated 4-body potential index too large

DL POLY Classic has a permitted maximum for the calculated index for any four body potential in
the system (i.e. as defined in the FIELD file). If there are m distinct types of atom in the system,
the index can possibly range from 1 to (m2 ∗ (m+1)∗ (m+2))/6. If the internally calculated index
exceeds this number, this error report results.

Action:
Standard user response. Fix the parameter mxfbp.

Message 102: error - parameter mxproc exceeded in shake arrays

The RD-SHAKE algorithm distributes data over all nodes of a parallel computer. Certain arrays in
RD-SHAKE have a minimum dimension equal to the maximum number of nodes DL POLY Classic
is likely to encounter. If the actual number of nodes exceeds this, the program terminates.

240

c⃝STFC Section C.0

Action:
Standard user response. Fix the parameter mxproc.

Message 103: error - parameter mxlshp exceeded in shake arrays

The RD-SHAKE algorithm requires that information about ‘shared’ atoms be passed between
nodes. If there are too many atoms, the arrays holding the information will be exceeded and
DL POLY Classic will terminate execution.

Action:
Standard user response. Fix the parameter mxlshp.

Message 105: error - shake algorithm failed to converge

The RD-SHAKE algorithm for bond constraints is iterative. If the maximum number of permitted
iterations is exceeded, the program terminates. Possible causes include: a bad starting config-
uration; too large a time step used; incorrect force field specification; too high a temperature;
inconsistent constraints involving shared atoms etc.

Action:
Corrective action depends on the cause. It is unlikely that simply increasing the iteration number
will cure the problem, but you can try: follow the standard user response to increase the control
parameter mxshak. But the trouble is much more likely to be cured by careful consideration of the
physical system being simulated. For example, is the system stressed in some way? Too far from
equilibrium?

Message 106: error - neighbour list array too small in parlink

Construction of the Verlet neighbour list in subroutine parlink nonbonded (pair) force has ex-
ceeded the neighbour list array dimensions.

Action:
Standard user response. Fix the parameter mxlist.

Message 107: error - neighbour list array too small in parlinkneu

Construction of the Verlet neighbour list in subroutine parlinkneu nonbonded (pair) force has
exceeded the neighbour list array dimensions.

Action:
Standard user response. Fix the parameter mxlist.

Message 108: error - neighbour list array too small in parneulst

Construction of the Verlet neighbour list in subroutine parneulst nonbonded (pair) force has ex-
ceeded the neighbour list array dimensions.

Action:
Standard user response. Fix the parameter mxlist.

241

c⃝STFC Section C.0

Message 109: error - neighbour list array too small in parlst nsq

Construction of the Verlet neighbour list in subroutine parlst nsq nonbonded (pair) force has
exceeded the neighbour list array dimensions.

Action:
Standard user response. Fix the parameter mxlist.

Message 110: error - neighbour list array too small in parlst

Construction of the Verlet neighbour list in subroutine parlst nonbonded (pair) force has exceeded
the neighbour list array dimensions.

Action:
Standard user response. Fix the parameter mxlist.

Message 112: error - vertest array too small

This error results when the dimension of the DL POLY Classic vertest arrays, which are used in
checking if the Verlet list needs updating, have been exceeded.

Action:
Standard user response. Fix the parameter mslst.

Message 120: error - invalid determinant in matrix inversion

DL POLY Classic occasionally needs to calculate matrix inverses (usually the inverse of the matrix
of cell vectors, which is of size 3 × 3). For safety’s sake a check on the determinant is made, to
prevent inadvertent use of a singular matrix.

Action:
Locate the incorrect matrix and fix it - e.g. are cell vectors correct?

Message 130: error - incorrect octahedral boundary condition

When calculating minimum images DL POLY Classic checks that the periodic boundary of the
simulation cell is compatible with the specifed minimum image algorithm. Program termination
results if an inconsistency is found. In this case the error refers to the truncated octahedral mini-
mum image, which is inconsistent with the simulation cell. The most probable cause is the incorrect
definition of the simulation cell vectors present in the input file CONFIG, these must equal the
vectors of the enscribing cubic cell.

Action:
Check the specified simulation cell vectors and correct accordingly.

Message 135: error - incorrect hexagonal prism boundary condition

When calculating minimum images DL POLY Classic checks that the periodic boundary of the
simulation cell is compatible with the specifed minimum image algorithm. Program termination
results if an inconsistency is found. In this case the error refers to the hexagonal prism minimum
image, which is inconsistent with the simulation cell. The most probable cause is the incorrect

242

c⃝STFC Section C.0

definition of the simulation cell vectors present in the input file CONFIG, these must equal the
vectors of the enscribing orthorhombic cell.

Action:
Check the specified simulation cell vectors and correct accordingly.

Message 140: error - incorrect dodecahedral boundary condition

When calculating minimum images DL POLY Classic checks that the periodic boundary of the
simulation cell is compatible with the specifed minimum image algorithm. Program termination
results if an inconsistency is found. In this case the error refers to the rhombic dodecahedral mini-
mum image, which is inconsistent with the simulation cell. The most probable cause is the incorrect
definition of the simulation cell vectors present in the input file CONFIG, these must equal the
vectors of the enscribing tetragonal simulation cell.

Action:
Check the specified simulation cell vectors and correct accordingly.

Message 141: error - duplicate metal potential specified

The user has specified a particular metal potential more than once in the FIELD file.

Action:
Locate the metal potential specification in the FIELD file and remove or correct the potential
concerned.

Message 142: error - interpolation outside range of metal potential attempted

The program has found that an interatomic distance in a simulated metallic system is such that it
requires a potential value outside range for which the potential is defined.

Action:
The probable cause of this is that the density of the system is unrealistic or the potential is being
used in unsuitable circumstances. The attempted simulation should be examined, and if considered
reasonable a new potential must be found.

Message 145: error - no van der waals potentials defined

This error arises when there are no VDW potentials specified in the FIELD file but the user has
not specified no vdw in the CONTROL file. In other words DL POLY Classic expects the FIELD
file to contain VDW potential specifications.

Action:
Edit the FIELD file to insert the required potentials or specify no vdw in the CONTROL file.

Message 150: error - unknown van der waals potential selected

DL POLY Classic checks when constructing the interpolation tables for the short ranged poten-
tials that the potential function requested is one which is of a form known to the program. If

243

c⃝STFC Section C.0

the requested potential form is unknown, termination of the program results. The most probable
cause of this is the incorrect choice of the potential keyword in the FIELD file or one in the wrong
columns (input is formatted).

Action:
Read the DL POLY Classic documentation and find the potential keyword for the potential desired.
Insert the correct index in the FIELD file definition and ensure it occurs in the correct columns
(17-20). If the correct form is not available, look at the subroutine forgen (or its variant) and
define the potential for yourself. It is easily done.

Message 151: error - unknown metal potential selected

The metal potentials available in DL POLY Classic are confined to density dependent forms of the
Sutton-Chen type. This error results if the user attempts to specify another.

Action:
Re-specify the potential as Sutton-Chen type if possible. Check the potential keyword appears in
columns 17-20 of the FIELD file.

Message 153: error - metals not permitted with multiple timestep

The multiple timestep algorithm cannot be used in conjunction with metal potentials in DL POLY Classic.

Action:
The simulation must be run without the multiple timestep option.

Message 160: error - unaccounted for atoms in exclude list

This error message means that DL POLY Classic has been unable to find all the atoms described
in the exclusion list within the simulation cell. This should never occur, if it does it means a serious
bookkeeping error has occured. The probable cause is corruption of the code somehow.

Action:
If you feel you can tackle it - good luck! Otherwise we recommend you get in touch with the
program authors. Keep all relevant data files to help them find the problem.

Message 170: error - too many variables for statistic array

This error means the statistics arrays appearing in subroutine static are too small. This can
happen if the number of unique atom types is too large.

Action:
Standard user response. Fix the parameter mxnstk. mxnstk should be at least (45+number of
unique atom types).

Message 180: error - Ewald sum requested in non-periodic system

DL POLY Classic can use either the Ewald method or direct summation to calculate the electro-
static potentials and forces in periodic (or pseudo-periodic) systems. For non-periodic systems only
direct summation is possible. If the Ewald summation is requested (with the ewald sum or ewald
precision directives in the CONTROL file) without periodic boundary conditions, termination of

244

c⃝STFC Section C.0

the program results.

Action:
Select periodic boundaries by setting the variable imcon>0 in the CONFIG file (if possible) or
use a different method to evaluate electrostatic interactions e.g. by usinf the coul directive in the
CONTROL file.

Message 185: error - too many reciprocal space vectors

DL POLY Classic places hard limit on the number of k vectors to be used in the Ewald sum and
terminates if more than this is requested.

Action:
Either consider using fewer k vectors in the Ewald sum (and a larger cutoff in real space) or follow
standard user response to reset the parameters kmaxb, kmaxc.

Message 186: error - transfer buffer array too small in sysgen

In the subroutine sysgen.f DL POLY Classic requires dimension of the array buffer (defined
by the parameter mxbuff) to be no less than the parameter mxatms or the product of parameters
mxnstk*mxstak. If this is not the case it will be unable to restart the program correctly to continue
a run. (Applies to parallel implementations only.)

Action:
Standard user response. Fix the parameter mxbuff.

Message 190: error - buffer array too small in splice

DL POLY Classic uses a workspace array named buffer in several routines. Its declared size is a
compromise of several rôles and may sometimes be too small (though in the supplied program, this
should happen only very rarely). The point of failure is in the splice routine, which is part of the
RD-SHAKE algorithm.

Action:
Standard user response. Fix the parameter mxbuff.

Message 200: error - rdf buffer array too small in revive

This error indicates that the buffer array used to globally sum the rdf arrays in subroutine revive
is too small.

Action:
Standard user response. Fix the parameter mxbuff. Alternatively mxrdf can be set smaller.

Message 220: error - too many neutral groups in system

DL POLY Classic has a fixed limit on the number of charged groups in a simulation. This error
results if the number is exceeded.

Action:
Standard user response. Fix the parameter mxneut.

245

c⃝STFC Section C.0

Message 225: error - multiple selection of optimisation options

The user has specified more than one optimisation directive in the CONTROL file//
Action:
Remove redundant optimisation directive(s) from CONTROL file.

Message 230: error - neutral groups improperly arranged

In the DL POLY Classic FIELD file the charged groups must be defined in consecutive order. This
error results if this convention is not adhered to.

Action:
The arrangement of the data in the FIELD file must be sorted. All atoms in the same group must
be arranged consecutively. Note that reordering the file in this way implies a rearrangement of the
CONFIG file also.

Message 250: error - Ewald sum requested with neutral groups

DL POLY Classic will not permit the use of neutral groups with the Ewald sum. This error results
if the two are used together.

Action:
Either remove the neut directive from the FIELD file or use a different method to evaluate the
electrostatic interactions.

Message 260: error - parameter mxexcl exceeded in excludeneu routine

An error has been detected in the construction of the excluded atoms list for neutral groups. This
occurs when the parameter mxexcl is exceeded in the excludeneu routine.

Action:
Standard user response. Fix parameter mxexcl.

Message 300: error - incorrect boundary condition in parlink

The use of link cells in DL POLY Classic implies the use of appropriate boundary conditions. This
error results if the user specifies octahedral, dodecahedral or slab boundary conditions.

Action:
The simulation must be run with cubic, orthorhombic or parallelepiped boundary conditions.

Message 301: error - too many rigid body types

The maximum number of rigid body types permitted by DL POLY Classic has been exceeded.

Action:
Standard user response. Fix the parameter mxungp.

246

c⃝STFC Section C.0

Message 302: error - too many sites in rigid body

This error arises when DL POLY Classic finds that the number of sites in a rigid body exceeds the
dimensions of the approriate storage arrays.

Action:
Standard user response. Fix the parameter mxngp.

Message 303: error - too many rigid bodies specified

The maximum number of rigid bodies in a simulation has been reached. Do not confuse this with
message 304 below.

Action:
Standard user response. Fix the parameter mxgrp.

Message 304: error - too many rigid body sites in system

This error occurs when the total number of sites within all rigid bodies exceeds the permitted
maximum. Do not confuse this with message 303 above.

Action:
Standard user response. Fix the parameter mxgatms.

Message 305: error - box size too small for link cells

The link cells algorithm in DL POLY Classic cannot work with less than 27 link cells. Depending
on the cell size and the chosen cut-off, DL POLY Classic may decide that this minimum cannot be
achieved and terminate.

Action:
If a smaller cut-off is acceptable use it. Otherwise do not use link cells. Consider running a larger
system, where link cells will work.

Message 306: error - failed to find principal axis system

This error indicates that the routine quatbook has failed to find the principal axis for a rigid unit.

Action:
This is an unlikely error. The code should correctly handle linear, planar and 3-dimensional rigid
units. Check the definition of the rigid unit in the CONFIG file, if sensible report the error to the
authors.

Message 310: error - quaternion setup failed

This error indicates that the routine quatbook has failed to reproduce all the atomic positions in
rigid units from the centre of mass and quaternion vectors it has calculated.

Action:
Check the contents of the CONFIG file. DL POLY Classic builds its local body description of a
rigid unit type from the first occurrence of such a unit in the CONFIG file. The error most likely

247

c⃝STFC Section C.0

occurs because subsequent occurrences were not sufficiently similar to this reference structure. If the
problem persists increase the value of the variable tol in quatbook and recompile. If problems still
persist double the value of dettest in quatbook and recompile. If you still encounter problems
contact the authors.

Message 320: error - site in multiple rigid bodies

DL POLY Classic has detected that a site is shared by two or more rigid bodies. There is no
integration algorithm available in this version of the package to deal with this type of model.

Action:
The only course is to redefine the molecular model (e.g. introducing flexible bonds and angles in
suitable places) to allow DL POLY Classic to proceed.

Message 321: error - quaternion integrator failed

The quaternion algorithm has failed to converge. If the maximum number of permitted iterations is
exceeded, the program terminates. Possible causes include: a bad starting configuration; too large
a time step used; incorrect force field specification; too high a temperature; inconsistent constraints
involving shared atoms etc.

Action:
Corrective action depends on the cause. Try reducing the timestep or running a zero kelvin structure
optimization for a hundred timesteps or so. It is unlikely that simply increasing the iteration
number will cure the problem, but you can try: follow the standard user response to increase the
parameter mxquat. But the trouble is much more likely to be cured by careful consideration of the
physical system being simulated. For example, is the system stressed in some way? Too far from
equilibrium?

Message 330: error - mxewld parameter incorrect

DL POLY Classic has two strategies for parallelization of the reciprocal space part of the Ewald
sum. If ewald1 is used the parameter mxewld should equal the parameter msatms. If ewald1a is
used this parameter should equal mxatms.

Action:
Standard user response. Set the parameter mxewld to the value appropriate for the version of
ewald1 you are using. Recompile the program.

Message 331: error - mxhke parameter incorrect

The parameter mxhke, which defines the dimension of some arrays used in the Hautman-Klein
Ewald method, should equal the parameter msatms.

Action:
Standard user response. Set the parameter mxhke to the value regquired. Recompile the program.

Message 332: error - mxhko parameter too small

The parameter mxhko defines the maximum order for the Taylor expansion implicit in the Hautman-
Klein Ewald method. DL POLY Classic has a maximum of mxhko = 3, but it can be set to less

248

c⃝STFC Section C.0

in some implementations. If this error arises when the user requestes an order in excess of this
parameter.

Action:
Standard user response. Set the parameter mxhko to a higher value (if it is <3) and recompile the
program. Alternatively request a lower order in the CONTROL file through the nhko variable (see
4.1.1).

Message 340: error - invalid integration option requested

DL POLY Classic has detected an incompatibility in the simulation instructions, namely that the
requested integration algorithm is not compatible with the physical model. It may be possible to
override this error trap, but it is up to the user to establish if this is sensible. Action:
This is a non recoverable error, unless the user chooses to override the restriction.

Message 350: error - too few degrees of freedom

This error can arise if a small system is being simulated and the number of constraints applied is
too large.

Action:
Simulate a larger system or reduce the number of constraints.

Message 360: error - frozen atom found in rigid body

DL POLY Classic does not permit a site in a rigid body to be frozen i.e. fixed in one location in
space.

Action:
Remove the ‘freeze’ condition from the site concerned. Consider using a very high site mass to
achieve a similar effect.

Message 380: error - simulation temperature not specified

DL POLY Classic has failed to find a temp directive in the CONTROL file.

Action:
Place a temp directive in the CONTROL file, with the required temperature specified.

Message 381: error - simulation timestep not specified

DL POLY Classic has failed to find a timestep directive in the CONTROL file.

Action:
Place a timestep directive in the CONTROL file, with the required timestep specified.

Message 382: error - simulation cutoff not specified

DL POLY Classic has failed to find a cutoff directive in the CONTROL file.

Action:
Place a cutoff directive in the CONTROL file, with the required forces cutoff specified.

249

c⃝STFC Section C.0

Message 383: error - simulation forces option not specified

DL POLY Classic has failed to find any directive specifying the electrostatic interactions options
in the CONTROL file.

Action:
Ensure the CONTROL file contains at least one directive specifying the electrostatic potentials
(e.g. ewald, coul, no electrostatics etc.)

Message 384: error - verlet strip width not specified

DL POLY Classic has failed to find the delr directive in the CONTROL file.

Action:
Insert a delr directive in the CONTROL file, specifying the width of the verlet strip augmenting
the forces cutoff.

Message 385: error - primary cutoff not specified

DL POLY Classic has failed to find the prim directive in the CONTROL file. Necessary only if
multiple timestep option required.

Action:
Insert a prim directive in the CONTROL file, specifying the primary cutoff radius in the multiple
timestep algorithm.

Message 386: error - primary cutoff larger than rcut

The primary cutoff specified by the prim directive in the CONTROL file exceeds the value speci-
fied for the forces cutoff (directive cut). Applies only if the multiple timestep option is required.

Action:
Locate the prim directive in the CONTROL file, and alter the chosen cutoff. Alternatively, increase
the real space cutoff specified with the cut directive. Take care to avoid error number 398.

Message 387: error - system pressure not specified

The target system pressure has not been specified in the CONTROL file. Applies to NPT simula-
tions only.

Action:
Insert a press directive in the CONTROL file specifying the required system pressure.

Message 388: error - npt incompatible with multiple timestep

The use of NPT (constant pressure) and temperature is not compatible with the multiple timestep
option.

Action:
Simulation must be run at fixed volume in this case. But note it may be possible to use NPT
without the multiple timestep, in ourder to estimate the required system volume, then switch back
to multiple timestep and NVT dynamics at the required volume.

250

c⃝STFC Section C.0

Message 390: error - npt ensemble requested in non-periodic system

A non-periodic system has no defined volume, hence the NPT algorithm cannot be applied.

Action:
Either simulate the system with a periodic boundary, or use another ensemble.

Message 391: error - incorrect number of pimd beads in config file

The CONFIG file must specify the position of all the beads in a PIMD simulation, not just the
positions of the parent atoms, otherwise this error results.

Action:
The CONFIG file must be reconstructed to provide the required data.

Message 392: error - too many link cells requested

The number of link cells required for a given simulation exceeds the number allowed for by the
DL POLY Classic arrays.

Action:
Standard user response. Fix the parameter mxcell.

Message 394: error - minimum image arrays exceeded

The work arrays used in images have been exceeded.
Action: Standard user response. Fix the parameter mxxdf.

Message 396: error - interpolation array exceeded

DL POLY Classic has sought to read past the end of an interpolation array. This should never
happen!

Action:
Contact the authors.

Message 398: error - cutoff too small for rprim and delr

This error can arise when the multiple timestep option is used. It is essential that the primary
cutoff (rprim) is less than the real space cutoff (rcut) by at least the Verlet shell width delr

(preferably much larger!). DL POLY Classic terminates the run if this condition is not satisfied.

Action:
Adjust rcut, rprim and delr to satisfy the DL POLY Classic requirement. These are defined with
the directives cut, prim and delr respectively.

Message 400: error - rvdw greater than cutoff

DL POLY Classic requires the real space cutoff (rcut) to be larger than, or equal to, the van der
Waals cutoff (rvdw) and terminates the run if this condition is not satisfied.

251

c⃝STFC Section C.0

Action:
Adjust rvdw and rcut to satisfy the DL POLY Classic requirement.

Message 402: error - van der waals cutoff unset

The user has not set a cutoff (rvdw) for the van der Waals potentials. The simulation cannot
proceed without this being specified.

Action:
Supply a cutoff value for the van der Waals terms in the CONTROL file using the directive rvdw,
and resubmit job.

Message 410: error - cell not consistent with image convention

The simulation cell vectors appearing in the CONFIG file are not consistent with the specified
image convention.

Action:
Locate the variable imcon in the CONFIG file and correct to suit the cell vectors.

Message 412: error - mxxdf parameter too small for shake routine

In DL POLY Classic the parameter mxxdf must be greater than or equal to the parameter mxcons.
If it is not, this error is a possible result.

Action:
Standard user response. Fix the parameter mxxdf.

Message 414: error - conflicting ensemble options in CONTROL file

DL POLY Classic has found more than one ensemble directive in the CONTROL file.

Action:
Locate extra ensemble directives in CONTROL file and remove.

Message 416: error - conflicting force options in CONTROL file

DL POLY Classic has found incompatible directives in the CONTROL file specifying the electro-
static interactions options.

Action:
Locate the conflicting directives in the CONTROL file and correct.

Message 418: error - bond vector work arrays too small in bndfrc

The work arrays in bndfrc have been exceeded.

Action:
Standard user response. Fix the parameter msbad.

252

c⃝STFC Section C.0

Message 419: error - bond vector work arrays too small in angfrc

The work arrays in angfrc have been exceeded.

Action:
Standard user response. Fix the parameter msbad.

Message 420: error - bond vector work arrays too small in tethfrc

The work arrays in tethfrc have been exceeded.

Action:
Standard user response. Fix the parameter msbad.

Message 421: error - bond vector work arrays too small in dihfrc

The work arrays in dihfrc have been exceeded.

Action:
Standard user response. Fix the parameter msbad.

Message 422: error - all-pairs must use multiple timestep

In DL POLY Classic the ‘all pairs’ option must be used in conjunction with the multiple timestep.

Action:
Activate the multiple timestep option in the CONTROL file and resubmit.

Message 423: error - bond vector work arrays too small in shlfrc

The dimensions of the interatomic distance vectors have been exceeded in subroutine shlfrc.

Action:
Standard user response. Fix the parameter msbad. Set equal to the value of the parameter mxshl.

Message 424: error - electrostatics incorrect for all-pairs

When using the all pairs option in conjunction with electrostatic forces, the electrostatics must be
handled with either the standard Coulomb sum, or with the distance dependent dielectric.

Action:
Rerun the simulation with the appropriate electrostatic option.

Message 425: error - transfer buffer array too small in shlmerge

The buffer used to transfer data between nodes in the subroutine shlmerge has been dimensioned
too small.

Action:
Standard user response. Fix the parameter mxbuff.

253

c⃝STFC Section C.0

Message 426: error - neutral groups not permitted with all-pairs

DL POLY Classic will not permit simulations using both the neutral group and all pairs options
together.

Action:
Switch off one of the conflicting options and rerun.

Message 427: error - bond vector work arrays too small in invfrc

The work arrays in subroutine invfrc have been exceeded.

Action:
Standard user response. Fix the parameter msbad.

Message 430: error - integration routine not available

A request for a nonexistent ensemble has been made or a request with conflicting options that
DL POLY Classic cannot deal with (e.g. a Evans thermostat with rigid body equations of motion).

Action:
Examine the CONTROL and FIELD files and remove inappropriate specifications.

Message 432: error - intlist failed to assign constraints

If the required simulation has constraint bonds DL POLY Classic attempts to apportion the molecules
to processors so that, if possible, there are no shared atoms between processors. If this is not possi-
ble, one or more molecules may be split between processors. This message indicates that the code
has failed to carry out either of these successfully.

Action:
The error may arise from a compiler error. Try recompiling intlist without the optimization flag
turned on. If the problem persists it should be reported to the authors, (after checking the input
data for inconsistencies).

Message 433: error - specify rcut before the Ewald sum precision

When specifying the desired precision for the Ewald sum in the CONTROL file, it is first necessary
to specify the real space cutoff rcut.

Action:
Place the cut directive before the ewald precision directive in the CONTROL file and rerun.

Message 434: error - illegal entry into STRESS related routine

The calculation of the stress tensor in DL POLY Classic requires additional code that must be
included at compile time through the use of the STRESS keyword. If this is not done, and
DL POLY Classic is later required to calculate the stress tensor, this error will result.

Action:
The program must be recompiled with the STRESS keyword activated. This will ensure all the
relevant code is in place. See section 3.2.1.

254

c⃝STFC Section C.0

Message 435: error - specify rcut before the coulomb precision

When specifying the desired precision for the coulomb sum in the CONTROL file, it is first neces-
sary to specify the real space cutoff rcut.

Action:
Place the cut directive before the coulomb precision directive in the CONTROL file and rerun.

Message 436: error - unrecognised ensemble

An unknown ensemble option has been specified in the CONTROL file.

Action:
Locate ensemble directive in the CONTROL file and amend appropriately.

Message 438: error - PMF constraints failed to converge

The constraints in the potential of mean force algorithm have not converged in the permitted num-
ber of cycles. (The SHAKE algorithm for PMF constraints is iterative.) Possible causes include: a
bad starting configuration; too large a time step used; incorrect force field specification; too high a
temperature; inconsistent constraints involving shared atoms etc.

Action:
Corrective action depends on the cause. It is unlikely that simply increasing the iteration number
will cure the problem, but you can try: follow standard user response to increase the parameter
mxshak. But the trouble is much more likely to be cured by careful consideration of the physical
system being simulated. For example, is the system stressed in some way? Too far from equilibrium?

Message 440: error - undefined angular potential

A form of angular potential has been requested which DL POLY Classic does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY Classic if this is possible. Alternatively, you may consider defining the required potential
in the code yourself. Amendments to subroutines sysdef and angfrc will be required.

Message 442: error - undefined three body potential

A form of three body potential has been requested which DL POLY Classic does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY Classic if this is reasonable. Alternatively, you may consider defining the required po-
tential in the code yourself. Amendments to subroutines sysdef and thbfrc will be required.

Message 443: error - undefined four body potential

DL POLY Classic has been requested to process a four-body potential it does not recognise.

Action:
Check the FIELD file and make sure the keyword is correctly defined. Make sure that subroutine

255

c⃝STFC Section C.0

fbpfrc contains the code necessary to deal with the requested potential. Add the code required if
necessary, by amending subroutines sysdef and fbpfrc.

Message 444: error - undefined bond potential

DL POLY Classic has been requested to process a bond potential it does not recognise.

Action:
Check the FIELD file and make sure the keyword is correctly defined. Make sure that subroutine
bndfrc contains the code necessary to deal with the requested potential. Add the code required
if necessary, by amending subroutines sysdef and bndfrc.

Message 445: error - undefined many body potential

DL POLY Classic has been requested to process a many body potential it does not recognise.

Action:
Check the FIELD file and make sure the keyword is correctly defined. Make sure the code version
you are using contains the code necessary to deal with the requested potential. Add the code
required if necessary.

Message 446: error - undefined electrostatic key in dihfrc

The subroutine dihfrc has detected a request for an unknown kind of electrostatic model.

Action:
The probable source of the error is an improperly described force field. Check the CONTROL file
and FIELD files for incompatible requirements.

Message 447: error - 1-4 separation exceeds cutoff range

In the subroutine dihfrc the distance between the 1-4 atoms in the potential is larger than the
cutoff that is applied to the 1-4 potential, meaning the potential will not be computed, though it
may be an essential component of the dihedral force and not necessarily a vanishing force.

Action:
The probable source of the error is an improperly described force field. Effectively the 1-4 distance
is not being restrained sufficently. Check the 1-4 potential parameters and the valence angles that
help define the dihedral geometry. If these are correct, then you may have to comment out this
error condition in the dihfrc.f subroutine, but beware that when the 1-4 atoms are too widely
separated, the dihedral angle can become indeterminable.

Message 448: error - undefined dihedral potential

A form of dihedral potential has been requested which DL POLY Classic does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable to

256

c⃝STFC Section C.0

DL POLY Classic if this is reasonable. Alternatively, you may consider defining the required po-
tential in the code yourself. Amendments to subroutines sysdef and dihfrc (and its variants)
will be required.

Message 449: error - undefined inversion potential

A form of inversion potential has been encountered which DL POLY Classic does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY Classic if this is reasonable. Alternatively, you may consider defining the required po-
tential in the code yourself. Amendments to subroutines sysdef and invfrc will be required.

Message 450: error - undefined tethering potential

A form of tethering potential has been requested which DL POLY Classic does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY Classic if this is reasonable. Alternatively, you may consider defining the required po-
tential in the code yourself. Amendments to subroutines sysdef and tethfrc will be required.

Message 451: error - three body potential cutoff undefined

The cutoff radius for a three body potential has not been defined in the FIELD file.

Action:
Locate the offending three body force potential in the FIELD file and add the required cutoff.
Resubmit the job.

Message 452: error - undefined pair potential

A form of pair potential has been requested which DL POLY Classic does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY Classic if this is reasonable. Alternatively, you may consider defining the required po-
tential in the code yourself. Amendments to subroutines sysdef and forgen will be required.

Message 453: error - four body potential cutoff undefined

The cutoff radius for a four-body potential has not been defined in the FIELD file.

Action:
Locate the offending four body force potential in the FIELD file and add the required cutoff. Re-
submit the job.

257

c⃝STFC Section C.0

Message 454: error - undefined external field

A form of external field potential has been requested which DL POLY Classic does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY Classic if this is reasonable. Alternatively, you may consider defining the required po-
tential in the code yourself. Amendments to subroutines sysdef and extnfld will be required.

Message 456: error - core and shell in same rigid unit

It is not sensible to fix both the core and the shell of a polarisable atom in the same molecular
unit. Consequently DL POLY Classic will abandon the job if this is found to be the case.

Action:
Locate the offending core-shell unit (there may be more than one in your FIELD file) and release
the shell (preferably) from the rigid body specification.

Message 458: error - too many PMF constraints - param. mspmf too small

The number of constraints in the potential of mean force is too large. The dimensions of the ap-
propriate arrays in DL POLY Classic must be increased.

Action:
Standard user response. Fix the parameter mspmf.

Message 460: error - too many PMF sites - parameter mxspmf too small

The number of sites defined in the potential of mean force is too large. The dimensions of the
appropriate arrays in DL POLY Classic must be increased.

Action:
Standard user response. Fix the parameter mxspmf.

Message 461: error - undefined metal potential

The user has requested a metal potential DL POLY Classic does not recognise.

Action:
Locate the metal potential specification in the FIELD file and replace with a recognised potential.

Message 462: error - PMF UNIT record expected

A pmf unit directive was expected as the next record in the FIELD file but was not found.

Action:
Locate the pmf directive in the FIELD file and examine the following entries. Insert the missing
pmf unit directive and resubmit.

258

c⃝STFC Section C.0

Message 463: error - unidentified atom in metal potential list

DL POLY Classic checks all the metal potentials specified in the FIELD file and terminates the
program if it can’t identify any one of them from the atom types specified earlier in the file.

Action:
Correct the erroneous entry in the FIELD file and resubmit.

Message 464: error - thermostat time constant must be > 0.d0

A zero or negative value for the thermostat time constant has been encountered in the CONTROL
file.

Action:
Locate the ensemble directive in the CONTROL file and assign a positive value to the time
constant.

Message 465: error - calculated pair potential index too large

A zero or negative value for the thermostat time constant has been encountered in the CONTROL
file.

Action:
Locate the ensemble directive in the CONTROL file and assign a positive value to the time
constant.

Message 466: error - barostat time constant must be > 0.d0

A zero or negative value for the barostat time constant has been encountered in the CONTROL file.

Action:
Locate the ensemble directive in the CONTROL file and assign a positive value to the time
constant.

Message 468: error - r0 too large for snm potential with current cutoff

The specified location (r0) of the potential minimum for a shifted n-m potential exceeds the speci-
fied potential cutoff. A potential with the desired minimum cannot be created.

Action:
To obtain a potential with the desired minimum it is necessary to increase the van der Waals
cutoff. Locate the rvdw directive in the CONTROL file and reset to a magnitude greater than
r0. Alternatively adjust the value of r0 in the FIELD file. Check that the FIELD file is correctly
formatted.

Message 470: error - n<m in definition of n-m potential

The specification of a n-m potential in the FIELD file implies that the exponent m is larger than
exponent n. (Not all versions of DL POLY Classic are affected by this.)

259

c⃝STFC Section C.0

Action:
Locate the n-m potential in the FIELD file and reverse the order of the exponents. Resubmit the
job.

Message 474: error - mxxdf too small in parlst subroutine

The parameter mxxdf defining working arrays in subroutine parlst of DL POLY Classic has been
found to be too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 475: error - mxxdf too small in parlst nsq subroutine

The parameter mxxdf defining working arrays in subroutine parlst nsq DL POLY Classic has
been found to be too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 476: error - mxxdf too small in parneulst subroutine

The parameter mxxdf defining working arrays in subroutine parneulst is too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 477: error - mxxdf too small in prneulst subroutine

The parameter mxxdf defining working arrays in subroutine prneulst is too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 478: error - mxxdf too small in forcesneu subroutine

The parameter mxxdf defining working arrays in subroutine forcesneu is too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 479: error - mxxdf too small in multipleneu subroutine

The parameter mxxdf defining working arrays in subroutine multipleneu is too small.

Action:
Standard user response. Fix the parameter mxxdf.

260

c⃝STFC Section C.0

Message 484: error - only one potential of mean force permitted

It is not permitted to define more than one potential of mean force in the FIELD file.

Action:
Check that the FIELD file contains only one PMF specification. If more than one is needed,
DL POLY Classic cannot handle it.

Message 486: error - HK real space screening function cutoff violation

DL POLY Classic has detected an unacceptable degree of inaccuracy in the screening function near
the radius of cutoff in real space, which implies the Hautman-Klein Ewald method will not be suf-
ficiently accurate.

Action:
The user should respecify the HK control parameters given in the CONTROL file. Either the
convergence parameter should be increased or the sum expanded to incorporate more images of the
central cell. (Warning: increasing the convergence parameter may cause failure in the reciprocal
space domain.) (See 4.1.1).

Message 487: error - HK recip space screening function cutoff violation

DL POLY Classic has detected an unacceptable degree of inaccuracy in the screening function near
the radius of cutoff in reciprocal space, which implies the Hautman-Klein Ewald method will not
be sufficiently accurate.

Action:
The user should respecify the HK control parameters given in the CONTROL file. Either the con-
vergence parameter should be reduced or more k-vectors used. (Warning: reducing the convergence
parameter may cause failure in the real space domain.) (See 4.1.1).

Message 488: error - HK lattice control parameter set too large

The Hautman-Klein Ewald method in DL POLY Classic permits the user to perform a real space
sum over nearest-neighbour and next-nearest-neighbour cells (i.e. up to nlatt=2). If the user
specifies a larger sum than this, this error will result.

Action:
The user should respecify the HK control parameters given in the CONTROL file and set nlatt
to a maximum of 2. (See 4.1.1).

Message 490: error - PMF parameter mxpmf too small in passpmf

The bookkeeping arrays have been exceeded in passpmf

Action:
Standard user response. Fix the parameter mxpmf. Set equal to mxatms.

Message 492: error - parameter mxcons < number of PMF constraints

The parameter mxcons is too small for the number of PMF constraints in the system.

261

c⃝STFC Section C.0

Action:
Standard user response. Fix the value of mxcons.

Message 494: error in csend: pvmfinitsend

The PVM routine pvmfinitsend has returned an error. It is invoked by the routine csend.

Action:
Check your system implementation of PVM.

Message 496: error in csend: pvmfpack

The PVM routine pvmfpack has returned an error. It is invoked by the routine csend.

Action:
Check your system implementation of PVM.

Message 498: error in csend: pvmfsend

The PVM routine pvmfsend has returned an error. It is invoked by the routine csend.

Action:
Check your system implementation of PVM.

Message 500: error in crecv: pvmfrecv

The PVM routine pvmfrecv has returned an error. It is invoked by the routine crecv.

Action:
Check your system implementation of PVM.

Message 502: error in crecv: pvmfunpack

The PVM routine pvmfunpack has returned an error. It is invoked by the routine crecv.

Action:
Check your system implementation of PVM.

Message 504: error - cutoff too large for TABLE file

The requested cutoff exceeds the information in the TABLE file.

Action:
Reduce the value of the vdw cutoff (rvdw) in the CONTROL file or reconstruct the TABLE file.

Message 506: error - work arrays too small for quaternion integration

The working arrays associated with quaternions are too small for the size of system being simu-
lated. They must be redimensioned.

Action:
Standard user response. Fix the parameter msgrp.

262

c⃝STFC Section C.0

Message 508: error - rigid bodies not permitted with RESPA algorithm

The RESPA algorithm implemented in DL POLY Classic is for atomic systems only. Rigid bodies
or constraints cannot be treated.

Action:
There is no cure for this. The code simply does not have this capability. Consider writing it for
yourself!

Message 510: error - structure optimiser not permitted with RESPA

The RESPA algorithm in DL POLY Classic has not been implemented to work with the structure
optimizer. You have asked for a forbidden operation.

Action:
There is no fix for this. In any case it does not make sense to use the RESPA algorithm for this
purpose.

Message 513: error - SPME not available for given boundary conditions

The SPME algorithm in DL POLY Classic does not work for aperiodic (IMCON=0) or slab (IM-
CON=6) boundary conditions.
Action:
If the system must have aperiodic or slab boundaries, nothing can be done. In the latter case
however, it may be acceptable to represent the same system with slabs replicated in the z direction,
thus permitting a periodic simulation.

Message 514: error - SPME routines have not been compiled in

The inclusion of the SPME algorithm in DL POLY Classic is optional at the compile stage. If the
executable does not contain the SPME routines, but the method is requested by the user, this error
results.

Action:
DL POLY Classic must be recompiled with the SPME flags set. Beware that your system has the
necessary fast Fourier transform routines to permit this.

Message 516: error - repeat of impact option specified

More than one impact option has been specified in the CONTROL file. Only one is allowed.

Action:
Remove the offending impact directive from the CONTROL file and rerun.

Message 518: error - cannot use pimd with the shell model

The shell model and path integral MD are incompatible in DL POLY.

Action:
The user must revert to a rigid ion model to use PIMD.

263

c⃝STFC Section C.0

Message 519: error - pimd array allocation failure in forces

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 520: error - cannot use pimd with constraint bonds

Constraint bonds and path integral MD are incompatible in DL POLY.

Action:
The user must replace the constrained bonds with flexible bonds.

Message 522: error - cannot use pimd with rigid molecules

Rigid molecules (or rigid molecular parts) are incompatible with path integral MD in DL POLY.

Action:
The user must revert to fully flexible models to use PIMD.

Message 523: error - pimd THEOLD file incompatible at restart

The file THEOLD, which contains the final thermostats from a previous run, does not match the
requirements of the restarted simulation.

Action:
Check that the THEOLD file is available to the program and that it is the correct one for the
simulated system. Replace if necesssary.

Message 524: error - cannot use pimd with neutral groups

The PIMD feature of DL POLY does not permit the use of neutral groups.

Action:
The user must remove the neutral groups from the simulation and adopt an alternative method for
handling the system electrostatics.

Message 525: error - cannot use pimd with metadynamics

DL POLY does not currently support the use of path integral MD with metadynamics.

Action:
There is currently no remedy for this problem.

Message 526: error - cannot use pimd with solvation functions

DL POLY does not currently support the use of path integral MD with the program’s solvation
features

264

c⃝STFC Section C.0

Action:
There is currently no remedy for this problem.

Message 527: error - cannot use pimd in free energy calculations

DL POLY does not currently support the use of path integral MD with the free energy features

Action:
There is currently no remedy for this problem.

Message 528: error - pimd array deallocation failure in forces

The program has failed to release the memory allocated to redundant arrays.

Action:
This is an unlikely error and implies a system fault. Consult your system manager.

Message 529: error - cannot use pimd with frozen atoms

The concept of frozen atoms is incompatible with path integral MD.

Action:
DL POLY does not currently allow for this possibility, so forget it.

Message 530: error - read thermostats allocation failure

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 531: error - read thermostats deallocation failure

The program has failed to release the memory allocated to redundant arrays.

Action:
This is an unlikely error and implies a system fault. Consult your system manager.

Message 532: error - write thermostats allocation failure

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 533: error - write thermostats deallocation failure

The program has failed to release the memory allocated to redundant arrays.

265

c⃝STFC Section C.0

Action:
This is an unlikely error and implies a system fault. Consult your system manager.

Message 534: error - alloc pimd arrays allocation failure

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 535: error - alloc pimd arrays deallocation failure

The program has failed to release the memory allocated to redundant arrays.

Action:
This is an unlikely error and implies a system fault. Consult your system manager.

Message 536: error - thermo chain vv array allocation failure

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 537: error - thermo chain vv array deallocation failure

The program has failed to release the memory allocated to redundant arrays.

Action:
This is an unlikely error and implies a system fault. Consult your system manager.

Message 538: error - thermo chain sy array allocation failure

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 539: error - thermo chain sy array deallocation failure

The program has failed to release the memory allocated to redundant arrays.

Action:
This is an unlikely error and implies a system fault. Consult your system manager.

266

c⃝STFC Section C.0

Message 540: error - alloc sol arrays array allocation failure

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 541: error - alloc free arrays array allocation failure

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 542: error - alloc exi arrays array allocation failure

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 601: error - Ewald SPME incompatible with solvation

The options in DL POLY Classic that use the energy decomposition/solvation facility do not per-
mit the use of the SPME option. It is possible however to use the standard Ewald method.

Action:
Change the SPME directive in the CONTROL file to ewald and rerun.

Message 602: error - Ewald HK incompatible with solvation

The options in DL POLY Classic that use the energy decomposition/solvation facility do not per-
mit the use of the Hautman-Klein Ewald option. It is possible however to use the standard Ewald
method.

Action:
Change the HKE directive in the CONTROL file to ewald. Make sure the system model includes
a large vacuum gap between material slabs to offset the effects of the periodic boundary.

Message 1000: error - failed allocation of configuration arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

267

c⃝STFC Section C.0

Message 1010: error - failed allocation of angle arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1011: error - failed allocation of dihedral arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1012: error - failed allocation of exclude arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1013: error - failed allocation of rigid body arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1014: error - failed allocation of vdw arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1015: error - failed allocation of lr correction arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

268

c⃝STFC Section C.0

Message 1020: error - failed allocation of angle work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1030: error - failed allocation of bond arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1040: error - failed allocation of bond work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1050: error - failed allocation of dihedral arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1060: error - failed allocation of dihedral work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1070: error - failed allocation of constraint arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

269

c⃝STFC Section C.0

Message 1090: error - failed allocation of site arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1100: error - failed allocation of core shell arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1115: error - failed allocation of hyperdynamics work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1010: error - failed allocation of angle arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1120: error - failed allocation of inversion arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1130: error - failed allocation of inversion work arrays’

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

270

c⃝STFC Section C.0

Message 1140: error - failed allocation of four-body arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1150: error - failed allocation of four-body work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1170: error - failed allocation of three-body arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1180: error - failed allocation of three-body work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1200: error - failed allocation of external field arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1210: error - failed allocation of pmf arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

271

c⃝STFC Section C.0

Message 1220: error - failed allocation of pmf lf or pmf vv work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1230: error - failed allocation of pmf shake work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1240: error - failed allocation of ewald arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1250: error - failed allocation of excluded atom arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1260: error - failed allocation of tethering arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1270: error - failed allocation of tethering work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

272

c⃝STFC Section C.0

Message 1280: error - failed allocation of metal arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1290: error - failed allocation of work arrays in nvt h0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1300: error - failed allocation of dens0 array in npt b0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1310: error - failed allocation of work arrays in npt b0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1320: error - failed allocation of dens0 array in npt h0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1330: error - failed allocation of work arrays in npt h0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

273

c⃝STFC Section C.0

Message 1340: error - failed allocation of dens0 array in nst b0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1350: error - failed allocation of work arrays in nst b0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1360: error - failed allocation of dens0 array in nst h0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1370: error - failed allocation of work arrays in nst h0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1380: error - failed allocation of work arrays in nve 1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1390: error - failed allocation of work arrays in nvt e1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

274

c⃝STFC Section C.0

Message 1400: error - failed allocation of work arrays in nvt b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1410: error - failed allocation of work arrays in nvt h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1420: error - failed allocation of work arrays in npt b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1430: error - failed allocation of density array in npt b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1440: error - failed allocation of work arrays in npt h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1450: error - failed allocation of density array in npt h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

275

c⃝STFC Section C.0

Message 1460: error - failed allocation of work arrays in nst b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1470: error - failed allocation of density array in nst b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1480: error - failed allocation of work arrays in nst h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1490: error - failed allocation of density array in nst h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1500: error - failed allocation of work arrays in nveq 1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1510: error - failed allocation of work arrays in nvtq b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

276

c⃝STFC Section C.0

Message 1520: error - failed allocation of work arrays in nvtq h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1530: error - failed allocation of work arrays in nptq b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1540: error - failed allocation of density array in nptq b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1550: error - failed allocation of work arrays in nptq h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1560: error - failed allocation of density array in nptq h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1570: error - failed allocation of work arrays in nstq b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

277

c⃝STFC Section C.0

Message 1580: error - failed allocation of density array in nstq b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1590: error - failed allocation of work arrays in nstq h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1600: error - failed allocation of density array in nstq h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1610: error - failed allocation of work arrays in qshake.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1615: error - failed allocation of work arrays in qrattle q.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1620: error - failed allocation of work arrays in nveq 2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

278

c⃝STFC Section C.0

Message 1625: error - failed allocation of work arrays in qrattle v.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1630: error - failed allocation of work arrays in nvtq b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1640: error - failed allocation of work arrays in nvtq h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1650: error - failed allocation of work arrays in nptq b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1660: error - failed allocation of density array in nptq b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1670: error - failed allocation of work arrays in nptq h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

279

c⃝STFC Section C.0

Message 1680: error - failed allocation of density array in nptq h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1690: error - failed allocation of work arrays in nstq b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1700: error - failed allocation of density array in nstq b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1710: error - failed allocation of work arrays in nstq h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1720: error - failed allocation of density array in nstq h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1730: error - failed allocation of HK Ewald arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

280

c⃝STFC Section C.0

Message 1740: error - failed allocation of property arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1750: error - failed allocation of spme arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1760: error - failed allocation of ewald spme.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1770: error - failed allocation of quench.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1780: error - failed allocation of quatqnch.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1790: error - failed allocation of quatbook.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

281

c⃝STFC Section C.0

Message 1800: error - failed allocation of intlist.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1810: error - failed allocation of forces.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1820: error - failed allocation of forcesneu.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1830: error - failed allocation of neutlst.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1840: error - failed allocation of multiple.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1850: error - failed allocation of multipleneu.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

282

c⃝STFC Section C.0

Message 1860: error - failed allocation of multiple nsq.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1870: error - failed allocation of parlst nsq.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1880: error - failed allocation of parlst.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1890: error - failed allocation of parlink.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1900: error - failed allocation of parlinkneu.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1910: error - failed allocation of parneulst.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

283

c⃝STFC Section C.0

Message 1920: error - failed allocation of zero kelvin.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1925: error - failed allocation of strucopt.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1930: error - failed allocation of vertest.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1940: error - failed allocation of pair arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1945: error - failed allocation of tersoff arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1950: error - shell relaxation cycle limit exceeded

There has been a convergence failure during the execution of relaxed shell polarisation model.
Probable cause: the system is unstable e.g. in an abnormally high energy configuration.
Action:
Increasing the maximum number of cycles permitted in the shell relaxation set by variable mxpass
in the dlpoly.f root program may help, but it is unlikely. A better option is to relax the structure
somehow first e.g. using the zero option in the CONTROL file.

284

c⃝STFC Section C.0

Message 1951: error - no shell dynamics algorithm specified

The user has failed to specify which of the available shell dynamics algorithm is to be used in the
simulation. Options include adiabtic shells and relaxed shells.
Action:
Locate the definition of the core-shell units in the FIELD file and check that all necessary integer
keys have been supplied. Consult the user manual if in doubt.

Message 1953: error - tersoff radius of cutoff not defined

The Tersoff potential requires the user to specify a short ranged cutoff as part of the potential
description. This is distinct from the normal cutoff used by the Van der Waals interactions.
Action:
Check the Tersoff potential description in the FIELD file. Make sure it is fully complete.

Message 1955: error - failed allocation of tersoff work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1960: error - conflicting shell option in FIELD file

The relaxed shell and adiabatic shell polarisation options in DL POLY Classic are mutually exclu-
sive. The user has request both options in the same simulation.
Action:
Locate the occurrences of the shell directives in the FIELD file and ensure they specify the same
shell model.

Message 1970: error - failed allocation of shell relax work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1972: error - unknown tersoff potential defined in FIELD file

DL POLY Classic has failed to recognise the Tersoff potentials specified by the user in the FIELD
file.

Action:
Locate the Tersoff potential specification in the FIELD fiel and ensure it is correctly defined.

285

c⃝STFC Section C.0

Message 1974: error - incorrect period boundary in tersoff.f

The implementation of the Tersoff potential in DL POLY Classic is based on the link cell algorithm,
which is suitable for rectangular or triclinic MD cells only. It is not suitable for any other shape of
MD cell.
Action:
The user must reconstruct the system according to one of the permitted periodic boundaries.

Message 1976: error - too many link cells required in tersoff.f

The number of link cells required by the Tersoff routines exceeds the amount allowed for by
DL POLY Classic. This can happen if the system is simulated under NPT or NST conditions
and the system volume increases dramatically.
Action:
The problem may cure itself on restart, provided the restart configuration has already expande
significantly. Otherwise the user must locate and adjust the mxcell according to the standard
response procedure.

Message 1978: error - undefined potential in tersoff.f

A form of Tersoff potential has been requested which DL POLY Classic does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY Classic if this is reasonable. Alternatively, you may consider defining the required po-
tential in the code yourself. Amendments to subroutines sysdef and tersoff will be required.

Message 1980: error - failed allocation of nvevv 1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 1990: error - failed allocation of nvtvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2000: error - failed allocation of nvtvv e1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

286

c⃝STFC Section C.0

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2010: error - failed allocation of nvtvv h1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2020: error - failed allocation of nptvv b1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2030: error - failed allocation of nptvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2040: error - failed allocation of nptvv h1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2050: error - failed allocation of nptvv h1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2060: error - failed allocation of nstvv b1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

287

c⃝STFC Section C.0

Message 2070: error - failed allocation of nstvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2080: error - failed allocation of nstvv h1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2090: error - failed allocation of nstvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2100: error - failed allocation of nveqvv 1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2110: error - failed allocation of nveqvv 2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2120: error - failed allocation of nvtqvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

288

c⃝STFC Section C.0

Message 2130: error - failed allocation of nvtqvv b2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2140: error - failed allocation of nvtqvv h1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2150: error - failed allocation of nvtqvv h2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2160: error - failed allocation of nptqvv b1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2170: error - failed allocation of nptqvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2180: error - failed allocation of nptqvv b2.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

289

c⃝STFC Section C.0

Message 2190: error - failed allocation of nptqvv b2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2200: error - failed allocation of nptqvv h1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2210: error - failed allocation of nptqvv h1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2220: error - failed allocation of nptqvv h2.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2230: error - failed allocation of nptqvv h2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2240: error - failed allocation of nstqvv b1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

290

c⃝STFC Section C.0

Message 2250: error - failed allocation of nstqvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2260: error - failed allocation of nstqvv b2.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2270: error - failed allocation of nstqvv b2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2280: error - failed allocation of nstqvv h1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2290: error - failed allocation of nstqvv h1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2300: error - failed allocation of nstqvv h2.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

291

c⃝STFC Section C.0

Message 2310: error - failed allocation of nstqvv h2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using more
processors or a machine with larger memory per processor.

Message 2320: error - NEB convergence failure

The nudged elastic band calculation in the temperature accelerated dynamics or bias potential
dynamics has failed to converge.

Action:
The best approach is to halt the TAD or BPD simulation and focus on the NEB calculation in
isolation. First try to reproduce the error by a straightforward NEB calculation using the same
start and end points for the chain. Adjusting the convergence criteria may offer a way forward.
Try minimising the start and end points independently to a higher precision. It is possible that the
start and end points are too far apart, so that one or more intermedate states have been missed.
This leads to multiple maxima on the reaction path, which may be the problem. In which case
examine the operational choices made in running the TAD or BPD simulation and see if changing
them will reduce the danger of this happening.

Message 2330: error - too many basin files found - increase mxbsn

A TAD or BPD run has generated more than 100 basin files, which is the internal operational limit.

Action:
Reset the mxbsn parameter, which is defined at the top of the hyper dynamics module.f file, to a
larger number and recompile.

Message 2340: error - TAD diffs arrays exceeded - increase mxdiffs

A TAD or BPD run has generated more than 300 recorded differences between the reference struc-
ture and all subsequent new basins found. Effectively this means it has recorded more than 300
atomic jumps, which is the internal operational limit.

Action:
Reset the mxdiffs parameter, which is defined at the top of the hyper dynamics module.f file, to a
larger number and recompile.

Message 2350: error - kinks found in NEB chain during optimisation

During a TAD or BPD run the nudged elastic band calculation is unable to converge because kink-
ing of the chain has occurred.

Action:
Tricky. This implies there is something extreme about the system potential energy surface, such as
it having an excessive number of undulations, or perhaps the simulation has start and end states
are too far apart. This may be fixed by trying different operational parameters, such as using a
different number of beads in the NEB chain, or perhaps the simulation is being run at too high a

292

c⃝STFC Section C.0

temperature. Some experimentation is required, but it may be possible that the system just isn’t
suitable for investigation by TAD or BPD.

Message 2355: error - cannot run both TAD and BPD together

The TAD and BPD options are not meant to run concurrently. Choose one or the other!

Action:
Remove either the TAD or BPD option from the CONTROL file.

Message 2500: error in number of collective variables - ncolvar too small?

The number of order parameters in a metadynamics simulation has not been properly specified.
Action:
Check input data in CONTROL file and correct accordingly.

Message 2501: Wang-Landau style recursion not yet implemented for ncolvar > 1

The Wang-Landau recursion option in metadynamics is currently limted to one order parameter
only.
Action:
Select another Gaussian convergence option in the CONTROL file.

Message 2502: Unrecognised Gaussian height scheme

An invalid option has been selected for the metadynamics Gaussian convergence scheme, which is
rstricted to values 0,1 and 2,
Action:
Reset the hkey option to an acceptable value in the CONTROL file.

Message 2503: Error maxhis exceeded in metadynamics

The internal storage of Gaussian data in metadynamics has been exceeded.
Action:
This can be recovered if a greater number of processing nodes is used at restart, but ideally, a less
ambitious Gaussian deposition rate should be considered.

Message 2504: Error allocating comms buffer in compute bias potential

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2505: Error allocating driven array

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

293

c⃝STFC Section C.0

Message 2508: Comms error in metadynamics setup

This is probably a programming error and should not occur.
Action:
Identify and fix the bug if you can. Otherwise locate the authors and ask for a fix.

Message 2509: Cannot bias local and global PE in same run

The metadynamics option does not allow the use of both global and local potential energy order
parameters at the same time.
Action:
Decide which of these options you really need and reset the directives in the CONTROL file.

Message 2510: Error allocating local force arrays

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2511: Error allocating collective variables arrays

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2512: Error allocating Wang-Landau bins

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2515: Error allocating Steinhardt parameter arrays

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2516: Could not open STEINHARDT

The STEINHARDT data (input) file cannot be opened.
Action:
The file is probably not available, or is unreadable. Restore the file as required and rerun.

Message 2517: Error allocating q4site

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

294

c⃝STFC Section C.0

Message 2518: Error allocating q6site

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2519: Error deallocating buff

Unlikely array deallocation error, which should not occur under normal use.
Action:
Possible system error. Raise issue with system manager.

Message 2521: Error reading line of STEINHARDT

The nominated line of the STEINHARDT file cannot be read.
Action:
Probably missing or corrupted data line in file. Locate and correct.

Message 2522: Error allocating Steinhardt parameter arrays

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2523: Could not open ZETA

The ZETA data (input) file cannot be opened.
Action:
The file is probably not available, or is unreadable. Restore the file as required and rerun.

Message 2524: Error allocating zetasite

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2525: Error allocating full neighbour list

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2527: Number of collective variables incorrect for specified order parameters

The internal check of the requested number of order parameters in a metadynamics simulation has
found an inconsistency.
Action:
Check the total number of collective variables (ncolvar) matches total number specified by nq4,
nq6, ntet and potential energy parameters.

295

c⃝STFC Section C.0

Message 2529: Error reading line of ZETA

There has been an error reading the nominated line of the ZETA file.
Action:
Probably a missing or corrupted data line. Locate and fix.

Message 2531: Comms error on reading METADYNAMICS

This is probably a programming error and should not occur.
Action:
Identify and fix the bug if you can. Otherwise locate the authors and ask for a fix.

Message 2532: Error in fc function - out of range

The switching function has been incorrectly defined in a hyperdynamics simulation.
Action:
Check the value reported and make the necessary correction in the STEINHARDT or ZETA file
concerned.

Message 2533: Error allocating solvation arrays for metadynamics

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2534: Error allocating comms buffer arrays

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2535: Solvation list overrun

The arrays tabulating the coordination list for either Steinhardt or tetrahedral order parameters
have been exceeded.
Action:
Locate the specification of the variable maxneigh in the metafreeze module.f file (there are 3 oc-
currences) and reset to a larger number.

Message 2536: Error deallocating solvation arrays for metadynamics

Unlikely array deallocation error, which should not occur under normal use.
Action:
Possible system error. Raise issue with system manager.

Message 2537: Error deallocating comms buffer arrays

Unlikely array deallocation error, which should not occur under normal use.
Action:
Possible system error. Raise issue with system manager.

296

c⃝STFC Section C.0

Message 2538: Error allocating solvation arrays for metadynamics

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2540: Error allocating force prefactor arrays

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2541: Memory allocation error in compute tet nlist

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

Message 2542: Error in metafreeze module.f90 mxninc too small

The internal estimate of the array allocation variable mxninc is too small for the purpose.
Action:
Locate where variable is defined in metafreeze module.f and reset to a larger number.

Message 2543: nnn too small in compute tet nlist

The internal estimate of the array allocation variable nnn is too small for the purpose.
Action:
Locate where variable is defined in metafreeze module.f and reset to a larger number.

Message 2544: mxflist too small in metafreeze module

The internal estimate of the array allocation variable mxflist is too small for the purpose.
Action:
Locate where variable is defined in metafreeze module.f and reset to a larger number.

Message 2545: Memory deallocation error in compute tet nlist

Unlikely array deallocation error, which should not occur under normal use.
Action:
Probable system error. Raise issue with system manager.

Message 2546: Memory allocation error in compute tet nlist

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

297

c⃝STFC Section C.0

Message 2547: Memory deallocation error in compute tet nlist

Unlikely array deallocation error, which should not occur under normal use.
Action:
Probable system error. Raise issue with system manager.

Message 2548: Memory allocation error in compute tet nlist

Unlikely array allocation error, which should not occur under normal use.
Action:
The user is probably making excessive demands of memory. Reconsider the problem size in relation
to compute resource.

298

Appendix D

Subroutine Locations

The Locations of Subroutines and Functions

The following table lists the subroutines and functions in DL POLY Classic and which source files
they can be found in.

Routine Kind Location

abort_config_read subroutine define_system_module.f

abort_control_read subroutine define_system_module.f

abort_eamtable_read subroutine metal_module.f

abort_field_read subroutine define_system_module.f

abort_table_read subroutine vdw_module.f

abortscan subroutine setup_module.f

alloc_ang_arrays subroutine angles_module.f

alloc_bnd_arrays subroutine bonds_module.f

alloc_config_arrays subroutine config_module.f

alloc_csh_arrays subroutine core_shell_module.f

alloc_dih_arrays subroutine dihedral_module.f

alloc_ewald_arrays subroutine ewald_module.f

alloc_exc_arrays subroutine exclude_module.f

alloc_exi_arrays subroutine solvation_module.f

alloc_fbp_arrays subroutine four_body_module.f

alloc_fld_arrays subroutine external_field_module.f

alloc_free_arrays subroutine solvation_module.f

alloc_hke_arrays subroutine hkewald_module.f

alloc_hyper_arrays subroutine hyper_dynamics_module.f

alloc_inv_arrays subroutine inversion_module.f

alloc_met_arrays subroutine metal_module.f

alloc_pair_arrays subroutine pair_module.f

alloc_pmf_arrays subroutine pmf_module.f

alloc_prp_arrays subroutine property_module.f

alloc_rgbdy_arrays subroutine rigid_body_module.f

alloc_shake_arrays subroutine shake_module.f

alloc_site_arrays subroutine site_module.f

alloc_sol_arrays subroutine solvation_module.f

alloc_spme_arrays subroutine spme_module.f

alloc_tbp_arrays subroutine three_body_module.f

299

c⃝STFC Section D.0

alloc_ter_arrays subroutine tersoff_module.f

alloc_tet_arrays subroutine tether_module.f

alloc_vdw_arrays subroutine vdw_module.f

angfrc subroutine angles_module.f

bndfrc subroutine bonds_module.f

bodystress subroutine rigid_body_module.f

bomb subroutine utility_module.f

bpd_forces subroutine hyper_dynamics_module.f

bpd_option subroutine define_system_module.f

bspcoe subroutine spme_module.f

bspgen subroutine spme_module.f

cell_propagate subroutine ensemble_tools_module.f

cell_update subroutine ensemble_tools_module.f

cerfr function hkewald_module.f

cfgscan subroutine setup_module.f

check_basins subroutine hyper_dynamics_module.f

check_for_transition subroutine hyper_dynamics_module.f

check_shells subroutine core_shell_module.f

check_syschg subroutine site_module.f

compute_bias_potential subroutine metafreeze_module.f

comput_steinhardt subroutine metafreeze_module.f

compute_steinhardt_forces subroutine metafreeze_module.f

compute_tet_nlist subroutine metafreeze_module.f

compute_tetrahedral subroutine metafreeze_module.f

compute_tetrahedral_forces subroutine metafreeze_module.f

config_write subroutine utility_module.f

conscan subroutine setup_module.f

copy_force subroutine solvation_module.f

copystring subroutine parse_module.f

corshl subroutine core_shell_module.f

coul0 subroutine coulomb_module.f

coul0neu subroutine neu_coul_module.f

coul1 subroutine coulomb_module.f

coul2 subroutine coulomb_module.f

coul2neu subroutine neu_coul_module.f

coul3 subroutine coulomb_module.f

coul3neu subroutine neu_coul_module.f

coul4 subroutine coulomb_module.f

coul_nsq subroutine coulomb_module.f

cpy_rtc subroutine utility_module.f

crecv subroutine basic_comms.f

crecv subroutine serial.f

csend subroutine basic_comms.f

csend subroutine serial.f

dblstr function parse_module.f

dcell subroutine setup_module.f

define_angles subroutine angles_module.f

define_atoms subroutine site_module.f

define_bonds subroutine bonds_module.f

300

c⃝STFC Section D.0

define_constraints subroutine shake_module.f

define_core_shell subroutine core_shell_module.f

define_dihedrals subroutine dihedral_module.f

define_external_field subroutine external_field_module.f

define_four_body subroutine four_body_module.f

define_inversions subroutine inversion_module.f

define_metadynamics subroutine metafreeze_module.f

define_metals subroutine metal_module.f

define_minimum_state subroutine hyper_dynamics_module.f

define_pmf subroutine pmf_module.f

define_rigid_body subroutine rigid_body_module.f

define_tersoff subroutine tersoff_module.f

define_tethers subroutine tether_module.f

define_three_body subroutine three_body_module.f

define_units subroutine define_system_module.f

define_van_der_waals subroutine vdw_module.f

deposit_gaussian subroutine metafreeze_module.f

dfc function metafreeze_module.f

diffsn0 subroutine property_module.f

diffsn1 subroutine property_module.f

dihfrc subroutine dihedral_module.f

dlpfft3 subroutine spme_module.f

duni function utility_module.f

eamden subroutine metal_module.f

ele_prd subroutine utility_module.f

energy_unit function define_system_module.f

ensemble_selection subroutine define_system_module.f

erfcgen subroutine ewald_module.f

error subroutine error_module.f

ewald1 subroutine ewald_module.f

ewald2 subroutine ewald_module.f

ewald3 subroutine ewald_module.f

ewald4 subroutine ewald_module.f

ewald_selection subroutine define_system_module.f

ewald_spme subroutine spme_module.f

excitation_option subroutine define_system_module.f

exclude subroutine exclude_module.f

exclude_atom subroutine exclude_module.f

exclude_link subroutine exclude_module.f

excludeneu subroutine exclude_module.f

exitcomms subroutine basic_comms.f

exitcomms subroutine serial.f

extnfld subroutine external_field_module.f

fbpfrc subroutine four_body_module.f

fc function metafreeze_module.f

fcap subroutine utility_module.f

findstring function parse_module.f

fldscan subroutine setup_module.f

force_manager subroutine forces_module.f

301

c⃝STFC Section D.0

forces subroutine forces_module.f

forces_neu subroutine forces_module.f

forgen subroutine vdw_module.f

fortab subroutine vdw_module.f

free_energy_option subroutine define_system_module.f

free_energy_write subroutine solvation_module.f

free_kinetic subroutine solvation_module.f

freegen subroutine solvation_module.f

freeze subroutine utility_module.f

fsden subroutine metal_module.f

gauss subroutine utility_module.f

gdsum subroutine basic_comms.f

gdsum subroutine serial.f

get_prntime subroutine utility_module.f

get_simtime subroutine utility_module.f

getcom subroutine ensemble_tools_module.f

getcom_mol subroutine utility_module.f

getkin function ensemble_tools_module.f

getkinf function ensemble_tools_module.f

getking subroutine ensemble_tools_module.f

getkinr function ensemble_tools_module.f

getkins subroutine ensemble_tools_module.f

getkint function ensemble_tools_module.f

getmass function ensemble_tools_module.f

getrec subroutine parse_module.f

getrotmat subroutine utility_module.f

getvom subroutine ensemble_tools_module.f

getword subroutine parse_module.f

gimax subroutine basic_comms.f

gimax subroutine serial.f

gisum subroutine basic_comms.f

gisum subroutine serial.f

global_sum_forces subroutine utility_module.f

gstate subroutine basic_comms.f

gstate subroutine serial.f

gsync subroutine basic_comms.f

gsync subroutine serial.f

hkewald1 subroutine hkewald_module.f

hkewald2 subroutine hkewald_module.f

hkewald3 subroutine hkewald_module.f

hkewald4 subroutine hkewald_module.f

hkgen subroutine hkewald_module.f

hyper_close subroutine hyper_dynamics_module.f

hyper_driver subroutine hyper_dynamics_module.f

hyper_open subroutine hyper_dynamics_module.f

hyper_start subroutine hyper_dynamics_module.f

images subroutine utility_module.f

impact subroutine temp_scalers_module.f

initcomms subroutine basic_comms.f

302

c⃝STFC Section D.0

initcomms subroutine serial.f

intlist subroutine define_system_module.f

intstr function parse_module.f

intstr3 function utility_module.f

invert subroutine utility_module.f

invfrc subroutine inversion_module.f

jacobi subroutine utility_module.f

kinstr subroutine ensemble_tools_module.f

kinstress subroutine ensemble_tools_module.f

kinstressf subroutine ensemble_tools_module.f

kinstressg subroutine ensemble_tools_module.f

lf_integrate subroutine integrator_module.f

loc2 function utility_module.f

loc3 function utility_module.f

loc4 function utility_module.f

lowcase subroutine parse_module.f

lrcmetal subroutine metal_module.f

lrcorrect subroutine vdw_module.f

lrcorrect_fre subroutine solvation_module.f

lrcorrect_sol subroutine solvation_module.f

machine subroutine basic_comms.f

machine subroutine serial.f

mat_mul subroutine utility_module.f

merge subroutine merge_tools.f

merge subroutine serial.f

merge1 subroutine merge_tools.f

merge1 subroutine serial.f

merge4 subroutine merge_tools.f

merge4 subroutine serial.f

metafreeze_driver subroutine metafreeze_module.f

metal_deriv subroutine metal_module.f

metdens subroutine metal_module.f

metfrc subroutine metal_module.f

metgen subroutine metal_module.f

mettab subroutine metal_module.f

mfrz_error subroutine metafreeze_module.f

minimiser subroutine driver_module.f

mkwd8 function parse_module.f

molecular_dynamics subroutine driver_module.f

multiple subroutine forces_module.f

multiple_neu subroutine forces_module.f

multiple_nsq subroutine forces_module.f

mynode function basic_comms.f

mynode function serial.f

neb_driver subroutine hyper_dynamics_module.f

neb_option subroutine define_system_module.f

neb_spring_forces subroutine hyper_dynamics_module.f

neb_system_forces subroutine hyper_dynamics_module.f

neutbook subroutine define_system_module.f

303

c⃝STFC Section D.0

neutlst subroutine forces_module.f

nlist_driver subroutine nlist_builders_module.f

nodedim function basic_comms.f

nodedim function serial.f

nosquish subroutine vv_rotation1_module.f

npt_b1 subroutine lf_motion_module.f

npt_h1 subroutine lf_motion_module.f

nptq_b1 subroutine lf_rotation1_module.f

nptq_b2 subroutine lf_rotation2_module.f

nptq_h1 subroutine lf_rotation1_module.f

nptq_h2 subroutine lf_rotation2_module.f

nptqscl_p subroutine ensemble_tools_module.f

nptqscl_t subroutine ensemble_tools_module.f

nptqvv_b1 subroutine vv_rotation1_module.f

nptqvv_b2 subroutine vv_rotation2_module.f

nptqvv_h1 subroutine vv_rotation1_module.f

nptqvv_h2 subroutine vv_rotation2_module.f

nptscale_p subroutine ensemble_tools_module.f

nptscale_t subroutine ensemble_tools_module.f

nptvv_b1 subroutine vv_motion_module.f

nptvv_h1 subroutine vv_motion_module.f

nst_b1 subroutine lf_motion_module.f

nst_h1 subroutine lf_motion_module.f

nstq_b1 subroutine lf_rotation1_module.f

nstq_b2 subroutine lf_rotation2_module.f

nstq_h1 subroutine lf_rotation1_module.f

nstq_h2 subroutine lf_rotation2_module.f

nstqmtk_p subroutine ensemble_tools_module.f

nstqscl_p subroutine ensemble_tools_module.f

nstqscl_p2 subroutine ensemble_tools_module.f

nstqscl_t subroutine ensemble_tools_module.f

nstqscl_t2 subroutine ensemble_tools_module.f

nstqvv_b1 subroutine vv_rotation1_module.f

nstqvv_b2 subroutine vv_rotation2_module.f

nstqvv_h1 subroutine vv_rotation1_module.f

nstqvv_h2 subroutine vv_rotation2_module.f

nstscale_p subroutine ensemble_tools_module.f

nstscale_t subroutine ensemble_tools_module.f

nstvv_b1 subroutine vv_motion_module.f

nstvv_h1 subroutine vv_motion_module.f

numnodes function basic_comms.f

numnodes function serial.f

nve_1 subroutine lf_motion_module.f

nveq_1 subroutine lf_rotation1_module.f

nveq_2 subroutine lf_rotation2_module.f

nveqvv_1 subroutine vv_rotation1_module.f

nveqvv_2 subroutine vv_rotation2_module.f

nvevv_1 subroutine vv_motion_module.f

nvt_b1 subroutine lf_motion_module.f

304

c⃝STFC Section D.0

nvt_e1 subroutine lf_motion_module.f

nvt_h1 subroutine lf_motion_module.f

nvtq_b1 subroutine lf_rotation1_module.f

nvtq_b2 subroutine lf_rotation2_module.f

nvtq_h1 subroutine lf_rotation1_module.f

nvtq_h2 subroutine lf_rotation2_module.f

nvtqscl subroutine ensemble_tools_module.f

nvtqvv_b1 subroutine vv_rotation1_module.f

nvtqvv_b2 subroutine vv_rotation2_module.f

nvtqvv_h1 subroutine vv_rotation1_module.f

nvtqvv_h2 subroutine vv_rotation2_module.f

nvtscale subroutine ensemble_tools_module.f

nvtvv_b1 subroutine vv_motion_module.f

nvtvv_e1 subroutine vv_motion_module.f

nvtvv_h1 subroutine vv_motion_module.f

optimisation_selector subroutine optimiser_module.f

parlink subroutine nlist_builders_module.f

parlinkneu subroutine nlist_builders_module.f

parlst subroutine nlist_builders_module.f

parlst_nsq subroutine nlist_builders_module.f

parneulst subroutine nlist_builders_module.f

parset subroutine setup_module.f

passcon subroutine pass_tools.f

passcon subroutine serial.f

passpmf subroutine pass_tools.f

passpmf subroutine serial.f

passquat subroutine pass_tools.f

passquat subroutine serial.f

pivot subroutine vv_rotation2_module.f

pmf_rattle_r subroutine pmf_module.f

pmf_rattle_v subroutine pmf_module.f

pmf_shake subroutine pmf_module.f

pmf_vectors subroutine pmf_module.f

pmflf subroutine pmf_module.f

pmflfq_1 subroutine pmf_module.f

pmfvv subroutine pmf_module.f

primlst subroutine nlist_builders_module.f

print_optim subroutine define_system_module.f

prneulst subroutine nlist_builders_module.f

pseudo_shake subroutine optimiser_module.f

put_shells_on_cores subroutine core_shell_module.f

qrattle_r subroutine vv_rotation2_module.f

qrattle_v subroutine vv_rotation2_module.f

qshake subroutine lf_rotation2_module.f

quatbook subroutine define_system_module.f

quatqnch subroutine temp_scalers_module.f

quench subroutine temp_scalers_module.f

rdf0 subroutine property_module.f

rdf0neu subroutine property_module.f

305

c⃝STFC Section D.0

rdf1 subroutine property_module.f

rdrattle_r subroutine vv_motion_module.f

rdrattle_v subroutine vv_motion_module.f

rdshake_1 subroutine lf_motion_module.f

read_reference_config subroutine hyper_dynamics_module.f

regauss subroutine temp_scalers_module.f

relax_shells subroutine core_shell_module.f

result subroutine property_module.f

revive subroutine property_module.f

rotate_omega subroutine vv_rotation1_module.f

scan_profile subroutine hyper_dynamics_module.f

scl_csum subroutine utility_module.f

scramble_velocities subroutine hyper_dynamics_module.f

sdot0 function utility_module.f

sdot1 function utility_module.f

set_block subroutine utility_module.f

shell_relaxation subroutine driver_module.f

shellsort subroutine utility_module.f

shlfrc subroutine core_shell_module.f

shlmerge subroutine merge_tools.f

shlmerge subroutine serial.f

shlqnch subroutine temp_scalers_module.f

shmove subroutine merge_tools.f

shmove subroutine serial.f

simdef subroutine define_system_module.f

solva_temp subroutine solvation_module.f

solvation_option subroutine define_system_module.f

solvation_write subroutine solvation_module.f

spl_cexp subroutine spme_module.f

splice subroutine merge_tools.f

splice subroutine serial.f

spme_for subroutine spme_module.f

srfrce subroutine vdw_module.f

srfrceneu subroutine vdw_module.f

static subroutine property_module.f

store_config subroutine hyper_dynamics_module.f

strip subroutine parse_module.f

striptext subroutine parse_module.f

strucopt subroutine optimiser_module.f

switch subroutine solvation_module.f

switch_atm subroutine solvation_module.f

switching_option subroutine define_system_module.f

sysbook subroutine define_system_module.f

sysdef subroutine define_system_module.f

sysgen subroutine define_system_module.f

sysinit subroutine define_system_module.f

systemp subroutine define_system_module.f

tad_option subroutine define_system_module.f

tergen subroutine tersoff_module.f

306

c⃝STFC Section D.0

terint subroutine tersoff_module.f

tersoff subroutine tersoff_module.f

tersoff3 subroutine tersoff_module.f

tethfrc subroutine tether_module.f

thbfrc subroutine three_body_module.f

timchk subroutine utility_module.f

torque_split subroutine optimiser_module.f

traject subroutine utility_module.f

traject_u subroutine utility_module.f

transition_properties subroutine hyper_dynamics_module.f

transition_time subroutine hyper_dynamics_module.f

turn_rigid_body subroutine optimiser_module.f

update_ghost subroutine solvation_module.f

update_quaternions subroutine lf_rotation1_module.f

vertest subroutine nlist_builders_module.f

vertest2 subroutine nlist_builders_module.f

vscaleg subroutine temp_scalers_module.f

vv_integrate subroutine integrator_module.f

warning subroutine error_module.f

write_profile subroutine hyper_dynamics_module.f

write_reference_confi subroutine hyper_dynamics_module.f

xscale subroutine tether_module.f

zden0 subroutine property_module.f

zden1 subroutine property_module.f

zero_kelvin subroutine optimiser_module.f

307

Index

algorithm, 5, 54, 96
Brode-Ahlrichs, 14, 76, 77
FIQA, 5, 55, 69
multiple timestep, 74–76, 99, 101, 102, 131
NOSQUISH, 5, 56, 69, 70
QSHAKE, 5, 55, 56, 71, 73, 80
RATTLE, 5, 56, 58, 79
SHAKE, 5, 55, 75, 79, 80
velocity Verlet, 5, 54, 56, 59
Verlet, 14, 15, 30, 43, 54, 57, 58, 60, 62, 64,

79
Verlet leapfrog, 5, 54, 55, 57

AMBER, 4, 13
angular momentum, 69
angular restraints, 20
angular velocity, 69
Aten, 5

barostat, 5, 71, 98
Berendsen, 66, 73
Hoover, 63

BASINS directory, 169
bias potential dynamics (BPD), see hyperdynam-

ics, BPD
boundary conditions, 4, 43, 216

cubic, 106
hexagonal prism, 106
rhombic dodecahedron, 106
truncated octahedron, 106

CCP5, 3
CFGBSNnn file, 167, 169
CFGMIN file, 132
CFGTRAnn file, 167
CFGTRKnn file, 170
charge groups, 108
CONFIG file, 104
constraints

bond, 3, 5, 14, 15, 57–59, 67, 70, 71, 79, 80,
111, 131

Gaussian, 46, 47, 59
PMF, 59, 112

CONTROL file, 96
CVS, 6

direct Coulomb sum, 43
distance dependent dielectric, 45, 46, 52, 97,

103
Fennel and Gezelter method, 45
truncated and shifted, 44
Wolf method, 45

distance restraints, 17

embedded atom potential, see potential,embedded
atom (EAM)

energy decomposition, 138
ensemble, 5

Berendsen NσT, 5, 55, 56, 98, 101, 103
Berendsen NPT, 5, 55, 56, 101, 103
Berendsen NVT, 5, 55, 56, 97, 98, 101, 103
canonical, 59
Evans NVT, 5, 55, 56, 97, 101, 103
Hoover NσT, 5, 55, 56, 101
Hoover NPT, 5, 55, 56, 98, 101
Hoover NVT, 5, 55, 56, 101
microcanonical, see ensemble,NVE
NVE, 59, 97, 101, 103

equations of motion
Euler, 69
rigid body, 69

error messages, 92, 221
EVENTS file, 167, 168
Ewald

Hautman Klein, 43, 50, 91, 98, 219
optimisation, 89–91
SPME, 6, 43, 48, 78, 89, 99
summation, 43, 46–48, 74, 75, 77, 90, 91, 98,

100, 101

FIELD file, 107
Finnis-Sinclair potential, see potential,Finnis-Sinclair
force field

GROMOS, 4
force field, 4, 13–15, 22, 41, 42

308

c⃝STFC Section D.0

AMBER, 4, 13
DL POLY, 4, 13, 54
Dreiding, 4, 13, 30, 31
GROMOS, 13
OPLS, 13

FORGE, 9
FORTRAN 90, 6, 7
free energy

thermodynamic integration, 138, 141
FREENG file, 145

Graphical User Interface, 9
Graphical User Interface, 5, 105
GROMOS, 4, 13
Gupta potential, see potential,Gupta

Hautman Klein Ewald, see Ewald, Hautman Klein
HISTORY file, 127

formatted, 127
unformatted, 128

hyperdynamics
BPD, 151, 153
exploring configuration space, 160
full path kinetics, 156

NEB, 152, 171
reaction path, 152, 170, 171
TAD, 151, 160

HYPOLD file, 168
HYPRES file, 167, 168

long ranged corrections
metal, 38
van der Waals, 30

metadynamics, 176
collective variables, see hyperdynamics, or-

der parameters
Gaussian potential, 176
METADYNAMICS file, 182
order parameter scaling, 179
order parameters, 177–179, 183
potential energy, 177
running simulations, 179
STEINHARDT file, 181
Steinhardt parameters, 178
Tetrahedral parameters, 179
theory of, 176
ZETA file, 181

minimisation, 88
conjugate gradients, 5, 54, 88

programmed, 5, 88
zero temperature, 5, 88

nudged elastic band (NEB), see hyperdynamics,
NEB

OUTPUT file, 129

parallelisation, 5, 75
Ewald summation, 77
intramolecular terms, 76
Replicated Data, 5
Verlet neighbour list, 77

pimd, 187
dynamics, 190
theory of, 187

potential
bond, 4, 14–17, 21, 22, 27, 31, 54, 76, 79,

111, 130
calcite, 25, 26
Coulombic, see potential,electrostatic
dihedral, 4, 13, 14, 20–24, 75, 76, 114, 130
electrostatic, 4, 8, 14, 17, 19, 42, 43, 74, 97–

99, 103, 130
embedded atom (EAM), 34, 35, 118, 125
Finnis-Sinclair, 34, 35, 118, 119
four-body, 4, 13–15, 27, 34, 78, 117, 118, 130
Gupta, 35, 119
improper dihedral, 4, 23, 75
intramolecular, 27, 34
inversion, 4, 13, 23–25, 34, 115
metal, 4, 13, 34, 118
nonbonded, 4, 14, 15, 76, 78, 86, 99, 108,

111, 113, 116
Sutton-Chen, 35, 119
tabulated, 124
Tersoff, 13, 14, 31, 33, 120, 121
tethered, 26, 27, 116, 130, 131
three-body, 4, 13–15, 17, 27, 30, 31, 78, 117,

130, 131
valence angle, 4, 13, 14, 17–19, 24, 30, 31,

75, 78, 112, 113, 130
van der Waals, 14, 17, 19, 74, 86, 101, 114

PROFILES directory, 170
PROnn.XY file, 167, 170

quaternions, 5, 55, 69, 99

RDFDAT file, 133
reaction field, 52, 53, 99
REVCON file, 132

309

c⃝STFC Section D.0

REVIVE file, 133
REVOLD file, 122
rigid body, 3, 5, 27, 55–57, 67, 68, 70, 71, 80
rigid bond, see constraints,bond
RNDNEW, 196
RNDOLD, 196

shell model polarisation, 53, 54
dynamical shell model, 53, 54
relaxed shell model, 54

SOLVAT file, 139
solvation energy, see energy decomposition, 138
spectroscopic excitation, 138, 146
SPME, see Ewald,SPME
STATIS file, 134
stress tensor, 19, 22, 25, 27, 29–31, 33, 34, 38,

44–46, 48, 53, 54, 58, 63
sub-directory, 208–212

build, 8
data, 8
execute, 8
java, 8
source, 8
utility, 8

Sutton-Chen potential, see potential,Sutton-Chen

TABEAM file, 125
TABLE file, 124
temperature accelerated dynamics (TAD), see hy-

perdynamics, TAD
THENEW file, 195, 196
THEOLD file, 195
thermostat, 5, 42, 71, 74, 98

Berendsen, 66, 67, 71, 73
Nosé-Hoover, 63, 64, 71, 73

TRACKS directory, 170

units
DL POLY, 7, 131
energy, 108
pressure, 7, 8, 63, 99, 131

Verlet neighbour list, 48, 74, 76–78, 102
VMD, 5

WWW, 3, 10

ZDNDAT file, 133

310

	The DL_POLY Classic User Manual
	About DL_POLY Classic
	Disclaimer
	Acknowledgements
	Manual Notation

	Contents
	List of Tables
	List of Figures
	Introduction
	The DL_POLY Classic Package
	Functionality
	Molecular Systems
	The DL_POLY Classic Force Field
	Boundary Conditions
	The Java Graphical User Interface
	Algorithms

	Programming Style
	Programming Language
	Memory Management
	Target Computers
	Version Control System (CVS)
	Required Program Libraries
	Internal Documentation
	Subroutine/Function Calling Sequences
	FORTRAN Parameters
	Arithmetic Precision
	Units
	Error Messages

	The DL_POLY Classic Directory Structure
	The source Sub-directory
	The utility Sub-directory
	The data Sub-directory
	The execute Sub-directory
	The build Sub-directory
	The java Sub-directory

	Obtaining the Source Code
	Other Information

	Force Fields and Algorithms
	The DL_POLY Classic Force Field
	The Intramolecular Potential Functions
	Bond Potentials
	Distance Restraints
	Valence Angle Potentials
	Angular Restraints
	Dihedral Angle Potentials
	Improper Dihedral Angle Potentials
	Inversion Angle Potentials
	The Calcite Four-Body Potential
	Tethering Forces
	Frozen Atoms

	The Intermolecular Potential Functions
	Short Ranged (van der Waals) Potentials
	Three Body Potentials
	The Tersoff Covalent Potential
	Four Body Potentials
	Metal Potentials
	External Fields

	Long Ranged Electrostatic (Coulombic) Potentials
	Atomistic and Charge Group Implementation
	Direct Coulomb Sum
	Truncated and Shifted Coulomb Sum
	Damped Shifted Force Coulomb sum
	Coulomb Sum with Distance Dependent Dielectric
	Ewald Sum
	Smoothed Particle Mesh Ewald
	Hautman Klein Ewald (HKE)
	Reaction Field
	Dynamical Shell Model
	Relaxed Shell Model

	Integration algorithms
	The Verlet Algorithms
	Bond Constraints
	Potential of Mean Force (PMF) Constraints and the Evaluation of Free Energy
	Thermostats
	Gaussian Constraints
	Barostats
	Rigid Bodies and Rotational Integration Algorithms
	The DL_POLY Classic Multiple Timestep Algorithm

	DL_POLY Parallelisation
	The Replicated Data Strategy
	Distributing the Intramolecular Bonded Terms
	Distributing the Nonbonded Terms
	Modifications for the Ewald Sum
	Modifications for SPME
	Three and Four Body Forces
	Metal Potentials
	Summing the Atomic Forces
	The SHAKE, RATTLE and Parallel QSHAKE Algorithms

	Construction and Execution
	Constructing DL_POLY Classic
	Overview

	Compiling and Running DL_POLY Classic
	Compiling the Source Code
	Running DL_POLY Classic
	Restarting DL_POLY Classic
	Optimising the Starting Structure
	Choosing Ewald Sum Variables

	DL_POLY Classic Error Processing
	The DL_POLY Classic Internal Error Facility

	Data Files
	The INPUT files
	The CONTROL File
	The CONFIG File
	The FIELD File
	The REVOLD File
	The TABLE File
	The TABEAM File

	The OUTPUT Files
	The HISTORY File
	The OUTPUT File
	The REVCON File
	The CFGMIN File
	The REVIVE File
	The RDFDAT File
	The ZDNDAT File
	The STATIS File

	Solvation
	Overview and Background
	DL_POLY Energy Decomposition
	Overview
	Invoking the DL_POLY Energy Decomposition Option
	The SOLVAT File

	Free Energy by Thermodynamic Integration
	Thermodynamic Integration
	Nonlinear Mixing
	Invoking the DL_POLY Free Energy Option
	The FREENG File

	Solution Spectroscopy
	Spectroscopy and Classical Simulations
	Calculating Solvent Induced Spectral Shifts
	Solvent Relaxation
	Invoking the Solvent Induced Spectral Shift Option
	Invoking the Solvent Relaxation Option

	Hyperdynamics
	Overview of Hyperdynamics
	The Nudged Elastic Band Calculation
	Bias Potential Dynamics
	Theory of Bias Potential Dynamics
	Running a BPD Simulation
	Full Path Kinetics
	Things to Be Aware of when Running Full Path Kinetics BPD
	Exploring Configurational Space

	Temperature Accelerated Dynamics
	Theory of Temperature Accelerated Dynamics
	Running a TAD Simulation
	Restarting a TAD Simulation
	Things to Be Aware of when Running TAD

	DL_POLY Classic Hyperdynamics Files
	Tidying Up the Results of a Hyperdynamics Simulation
	Refining the Results
	Treatment of Multiple Maxima in the Reaction Path

	Running a Nudged Elastic Band Calculation
	Things to be Aware of when Running a NEB Calculation

	Metadynamics
	Overview
	Theory of Metadynamics
	Order Parameters
	Potential Energy as an Order Parameter
	Steinhardt Order Parameters
	Tetrahedral Order Parameters
	Order Parameter Scaling

	Running Metadynamics Simulations
	Additional Considerations
	Analysing the Metadynamics Results

	Path Integral Molecular Dynamics
	Overview
	Theory of PIMD
	Path Integral Dynamics
	Invoking the PIMD Option
	PIMD Files
	THENEW and THEOLD
	RNDNEW and RNDOLD

	Things to be aware of when running a PIMD simulation

	Example Simulations
	DL_POLY Examples
	Test Cases
	Benchmark Cases

	Utilities
	Miscellaneous Utilities
	Useful Macros

	Bibliography
	Appendices
	The DL_POLY Classic Makefile
	Periodic Boundary Conditions in DL_POLY Classic
	Error Messages and User Action
	Subroutine Locations
	Index

