
 

  

 

 
 

 
  

 
 

 

  

 

  
 

 

 

 
 

 

 

 

  

 

 
  

 

 

 
 

  

 
 

  
 

 

 

PROPOSING IMPROVEMENTS TO AVOID THE CRC COMPROMISE 
AND THE SILENT SPECIFICATION 
Cleon Rogers, Consultant, Little Rock, Arkansas 

Abstract 
In this paper we examine the issues and benefits 

associated with the use of cyclic redundancy checks 
(CRC)s that manifest during the later phases of 
safety-critical software development projects.  We 
look at some less obvious details that will potentially 
increase return on investment (ROI), avoid common 
DO-178B certification planning and design 
difficulties, as well as, speed development and 
integration.  We propose software build process 
improvements with promise to improve version 
integrity, executable integrity, version identification, 
and executable identification.  We examine the role 
of CRCs in software configuration management 
(SCM) and propose their potential for partial 
satisfaction of DO-178B objectives, like traceability. 
We look at time-saving steps for integrating with 
systems that use one of three standard algorithms.  Of 
particular interest, we provide a table of residues 
from faulty algorithms and their likely causes and 
remedies, and provide overlooked tips for 
asynchronous communication devices to aid in the 
late development phase. There are analysis and data 
collection techniques proposed to support initial data 
transfer error rate claims in the early assessment of 
system integrity and availability, and to show the 
satisfaction of established bounds. 

Introduction 
Successfully completing the development of 

embedded error detection and correction (EDC), and 
doing it faster, cheaper, and better is obviously 
possible when using experts [1,2,3].  To make the 
success more likely, in general, for future designs 
using these ubiquitous EDCs, like CRCs, is a goal of 
this paper, through the potential of improved 
standards, specifications, and guidance.  The number 
of unsuccessful completions is unknown and, in the 
opinion of the author, their identification needs to be 
established. Likewise, a turn-key “checklist” type of 
solution could supplement existing data in 
specifications, thus reducing the effects of the “Silent 
Specification,” (a specification missing the necessary 

details for successful completion without consulting 
subject matter experts in the late development phase). 
Better, more complete, specifications prevent short 
circuits to release from becoming the driving current 
to the “CRC Compromise.”  We define the CRC 
Compromise as a situation where the error control (or 
CRC) has been disabled, by either turning its 
calculation and comparison off, or by using a pre
calculated receiver-end, “actual” CRC value that will 
always match the transmitter-end “expected” value. 
With a silent specification and/or lacking standard 
guidance, this activity might pass through 
certification.  We gain so much, and economically, 
from using the robustness of error control correctly, 
(we present some here), that these hazards should be, 
in our opinion, recognized and prevented by future 
guidance. As more functionality is moved from 
mechanical and electrical systems to embedded 
electronic and software systems, the protected cargo 
(embedded code) must be executed dependably. 

The paper is organized by following the life 
cycle steps of an embedded code, which will be 
partially protected during runtime by an appended 
CRC (or multiple CRCs).  Along the way, other 
potential benefits and issues of CRC usage are 
summarily noted, as they arise.  Finally, we end with 
the protection and identification provided to the code 
in data storage archives of the configuration 
management versions and their retrieval for 
subsequent usage in any new generation 
developments.  (Please note that following the path 
of embedded code is for organizational purposes. 
The collection of CRCs for a complete system may 
include the ones covering source files, etc.) We 
categorize the path into ten steps, some integral, for 
reference: 

A Typical Journey of Our Embedded Code 
Step 1: Specifications/Standards/Planning/Design/ 

Develop/Build/Make 

Step 2: Version Control/Project Management 

Step 3: Module/Interface Testing 
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Step 4: Release/CM/QA 

Step 5: Formal Verification/Validation/ Certification 

Step 6: Distribution/Loading/Runtime 

Step 7:  Historical Data Collection/ Maintenance/ 
Modifications 

Step 8: Repeat steps 1 through 6 for modifications 

Step 9: Archival/End-of-life 

Step 10: New Generation Inclusion (Reuse) 

Background 
Background to the current subject matter was 

provided in our previous paper [4].  Whereas the 
previous paper focused on issues surrounding the 
field-loading of software, this paper expands on 
issues and benefits of error control, in a broader 
sense, to aid non-experts in their usage, and to raise 
awareness of the potential for improvements to 
standards and guidance. 

Methods 
For this paper, we collected and analyzed 

information from text books, research papers, the 
internet, lessons learned on previous projects, 
standards, regulations, as well as some that may be 
new, at least in the collection [5-12]. 

The Journey 

Step 1.1 Specification 
Proposed for inclusion in a specification, 

standard, or elsewhere are: 

(a) require 	an appropriate error control 
strategy [1]; 

(b) consider the common mode for the CRC 
covering the executable code residing in a 
data storage archive of software versions 
in dual redundant systems [13]; 

(c) consider stating the message block size 
minimum, maximum, and size restrictions 
for the chosen polynomial;  include the 
message length as a parameter to the 
calculation routine [14,15]; 

(d) establish restrictions on channel noise by 
setting bounds for bit error rates (BER); 

(e) requiring	 compliance with improved 
standards covering error control; 

(f) requiring 	research references and 
sourcing for chosen polynomials and 
implementations; or improved standards 
and guidance; 

(g) restricting 	processor selections with 
instruction sets that affect CRC 
implementations, for instance, left/right 
shift and Exclusive OR; 

(h) consider requiring hardware counters for 
all jumps through RESET, subsequent to 
the last scheduled maintenance reading 
and clearing of counters; 

(i) consider requiring the collection of error 
statistics on data transfers, such as, retries, 
overruns, parity errors, underflow, framing 
errors, timeouts, length errors, etc. 

(j) specifying	 protocol bit, byte, word 
ordering and other data used in the CRC 
calculation of a protocol packet; 

(k) stating the 	endianess of the chosen 
processor and coordinating with the CRC 
algorithm implementation; 

(l) include a runtime verification method of 
table entries of any table-driven 
algorithms; and 

(m) several 	references provide additional 
standard-type parameters for CRC 
implementations, such as, stating the initial 
CRC value, final XOR value, forward or 
reverse algorithms, padding, flushing, 
word alignment, etc. [12, 10, 9]. 

Step 1.2 Standards 
We will cover later, two 16-bit standards, CRC

16 and CCITT-16 and one 32-bit standard, CRC-32. 
It is recommended that standards be augmented with 
information on block size restrictions, their effects on 
the probability of undetected errors, and the patterns 
for detectable and undetectable errors (i.e., random 
and/or burst), for future designs. 
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Step 1.3 Planning 
An inclusion to the basis of certification in the 

Plan for Software Aspects of Certification (PSAC) is 
proposed to reference the specification and an 
improved CRC Standard for agreement on the error 
control usage to partially satisfy identification and 
integrity requirements. 

Step 1.4 Design/Develop 
Using the information collected from the 

specification, standards, PSAC, etc. the EDC/CRC 
software or system developer should be able to select, 
reference, and specify one of the many available 
peer-reviewed, published, standards-based 
implementations that satisfy the requirements, that is 
unambiguous to implement, accurate, and that is 
verifiable. Tables, from table-driven 
implementations, and CRC algorithms come as 
matching sets, such as, a “forward” 16-bit table is 
coupled with a forward 16-bit algorithm, both using 
the same polynomial.  One possible implementation 
hazard would use the 16-bit table from one algorithm 
with the calculation algorithm from another.   

Step 1.5 Build/Make 
In the ‘make’ of systems, utilizing table-driven 

algorithms, the table generator code could be 
exercised during every build.  One way is to verify a 
match of the new table, when created, in the build 
with the table that was archived in the previous 
version. In addition, the source files used in the 
previous build could have their file CRC values 
recalculated and verified before applying the deltas to 
these files and using them in the new build. 
Periodically, older versions in SCM could have all 
CRCs recalculated and verified, also.  For added 
assurance, run a pass of the executable with each byte 
fed to the algorithm bit-reversed and store the result 
in the version description document, along with the 
normal one.  In addition, the forward and bit-reversed 
CRCs could be embedded in the executable code.  It 
is stated here without proof that this two-pass 
method, with what we’ll call Secondary CRC(s), 
could approach a doubling of the protection against 
undetected errors, with a negligible increase in 
complexity. 

In the version description document or software 
configuration index, include the executable’s CRC(s) 

with the version number.  This provides a unique 
version identification and a traceability link from the 
executable to the version, used for partial satisfaction 
of DO-178B objectives. If this same ID information 
is read and displayed, it could provide executable 
identification, another DO-178B objective.  The 
uniqueness of the version and executable 
identification improves integrity. 

Step 1.6 Unit Test 
Consider incremental development of a unit test, 

starting with a simple message, such as, ‘T’, for the 
byte-at-a-time methods using table lookups. The 
byte character, ‘T’, will result in an index fetch into 
the table with the addition of pre- and post- 
conditioning.  Note that this index is bit reversed by 
some algorithms.  Unit testing with word or longer 
messages should match machine byte and word 
ordering specifications of the implementation. 
Several practical references give step-by-step 
instructions with sample code for some of the 
standard polynomials.  When developed, the verified 
results could be recorded against published peer-
reviewed examples [16-19]. If it hasn’t been done 
previously, messages and CRCs could be matched 
against a polynomial or synthetic division manually, 
or with the aid of a computer algebra system (see 
step 5). 

Step 2 Version Control & Project Management 
Consider controls to prevent unauthorized 

‘restores’ from backups of the version control 
database that could lose newly identified hazards and 
safety discrepancies that are to be reported to 
program management and the developer. 

Step 3 Module/Interface Testing 
In Table 11, the first column, “Poly”, contains 

the polynomial coefficients.  Column 1 contains the 
residue (CRC) obtained using the character, ‘T’, 
(hexadecimal value, 0x54), with parameters: all zeros 
for the initial value; zeros for the final exclusive or 
(XOR); not bit reversed on input; and not bit reversed 
on output. Going from column 1 to column 2: 
reverse the bits in each input byte, reverse the bits in 

1 Data for table entries provided by Alex Rogers, (used with 
permission). 
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each output byte; from 2 to 3: each output byte is not 
reversed; from 3 to 4: use all ones for the initial 
value, each output byte is reversed; from 4 to 5: each 
input byte is reversed, each output byte is not 
reversed; from 6 to 7: each input byte is not reversed. 
If a match is not found in the expected column and is 
found in another column, follow the steps for the two 
columns, from left to right, and undo the incorrect 
steps in the code and/or data.  

Table 1. Faulty Residues and Their Parameters 

Step 4 Release/CM/QA 
The data storage of software life-cycle data 

(SLCD) has not necessarily been adequately 
protected with a CRC that is designed for an ARQ 
system [1], and becomes a common hazard in the 
extraction of released executable code from storage 
and then installed on a dual-redundant system (see 
Figure 1). Any residual risk must be knowingly 
accepted, according to assessment practices of some 
system safety standards [20]. 

Poly 1 2 3 4 5 6 7 
1021 1A71 14A1 8528 1B26 81DF 9B27 047E 
8408 9AF8 1AB1 8D58 11BA 1452 A277 B5D7 
A001 C06E EC06 6037 61FC FBF9 3F86 9FDF 
8005 81FB FF01 80FF BFBE 9F3E 8202 8306 

Figure 1. Overall Data Transfer System (ODTS) – Dual Redundant 
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It is proposed that the CM process associate a 
CRC (or EDC) with the version number included in 
the SLCD, such as, a version description document 
(VDD), equipment specification, or software 
configuration index (SCI).  The version data should 
include the software life cycle environment source 
code data that is used for calculating and embedding 
CRCs. (see section 11.15 of Software Considerations 
in Airborne Systems and Equipment Certification) 
[21]. For table-driven algorithms, this source data 
should include the table, the source code that 
generates and verifies the table, and the mechanism 
that prevents the table entries from accidental and/or 
unauthorized alterations.  It is recommended that the 
table generation be exercised for every release. 
Periodic recalculation of all CRCs supports the 
satisfaction of data recovery and retention objectives. 

For a more critical embedded system, one could 
run another pass of the algorithm with a different 
polynomial and include the new CRC with the 
original; or run a pass with each of the bytes, bit-
reversed, and store this CRC in addition to the 
original. (This technique, using Secondary CRC(s), 
was first mentioned in step 1.5, but to serve a 
different primary purpose, integrity vs. 
identification.) 

Step 5 Formal V&V/Certification 
Rules of thumb for inspection of the tables in 

byte-oriented table-driven methods: 

1.	 The first table entry is generally all zeros. 

2.	 The second entry is a repeat of the CRC 
polynomial coefficients. 

3.	 For reversed methods, the CRC polynomial 
coefficient repeat is located at hex address 
0x80. 

4.	 Also note, for a one byte message equal to 
hex 0x01, the calculation should return the 
first table entry with pre- and post
conditions, and reflections applied. 

Polynomial or synthetic division of the message 
by the CRC polynomial (generator polynomial) can 
be done manually to confirm the results of an 
algorithm on a given message: 

Polynomial Division over a Field [22] 
Let the message be m(x), the CRC polynomial 

be p(x), and the quotient is q(x) with the remainder of 
r(x), then say 

i( ) = ∑ 
k 

ci x ,m x 
i=0 

l 
ip( )x =∑di x , over a field, k ≥ l ≥ 0 , 

i=0 

dl ≠ 0 , 

so 

l l−1 0 k k −1 0dl x + dl−1x +L+ d0 x c x + c x +L+ c xk k −1 0 

has 
k−l

( ) = ∑ andq x qi x
i 

i=0

l−1 
ir( )x =∑ ri x 

i=0 

satisfying the Euclidean property over an 
integral domain, 

m(x) = p( ) ( )  ( )x q x + r x , 
deg[ ( )] < deg p x ].r x [ ( )  

Step a: 

For(n = k − l; n = 0; n − −) 
cl+nq = n dl 

For( j = l + n −1; j = n; j − −) 
c j = c j − qnd j−n 

Step b: 
return((qi ; i = 0,1,L, k − l) (, ri ; i = 0,1,L, l −1)) 
from step a, where ri = ci. 

The CRC to be appended to the message, m(x), 
is just the coefficients of r(x).  (Note: For binary and 
monic cases, dl = 1, and thus, the synthetic division is 
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performed using only subtraction and multiplication, 
no division. Also, returning q(x) is not necessary, it 
could be discarded.) 

Provided below is a procedure using 
Mathematica that could ease the tediousness of the 
modulo-2 polynomial long division for a long 
message. The provided procedure is demonstrated 
with an example from Joe Campbell’s book [9]: 

<< Algebra`PolynomialPowerMod` 

[ASCII Message char 'CfyU' w/bit 8 for EVEN 
parity, 0x1021 Divisor (11021)] 

msgBcoef = {1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 
1, 1, 1, 1, 1, 0,  

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0,

 0} 

msgBinPoly = Apply[Plus, msgBcoef*Table[x^n, {n, 
47, 0, -1}]] 

divisorCoef = {1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 
0, 1} 

divisorPoly = Apply[Plus, divisorCoef*Table[x^n, 
{n, 16, 0, -1}]] 

remPolyIsCRC = 
PolynomialRemainder[msgBinPoly, divisorPoly, 
x, Modulus -> 2] 

msgCcoefWithCRC = 

  BitXor[msgBcoef,  

    Join[Table[0, {n, 1, 32}], 
Reverse[CoefficientList[remPolyIsCRC, x]]]] 

msgCWithCRCasPoly = Apply[Plus, 
msgCcoefWithCRC*Table[x^n, {n, 47, 0, -1}]] 

zeroRemQ = 

  PolynomialRemainder[msgCWithCRCasPoly,
 
divisorPoly, x, Modulus -> 2]
 

In addition, a CRC procedure is provided2 in the 
Python language: 

class Cyclic(): 

def __init__(self): 

self.table = [None]*256 

def 
crcInit(self,poly,order='forward'): 

for dividen in range(256): 

remainder = dividen << 8 

if order == 'forward': 

for bit in range(8): 

if remainder & 0x8000: # 
don't skip col in long div (topbit) 

remainder = (remainder << 
1) ^ poly 

else: # skip col, divisor >
remainder, for this col 

remainder = remainder << 1 

self.table[dividen] = 
remainder & 0xFFFF # keep 16 bits 

elif order == 'reverse': 

for bit in range(8): 

if remainder & 0x0001: # 
don't skip col in long div (botbit) 

remainder = (remainder >> 
1 ) ^ poly 

            else: # skip col, divisor > 
remainder, for this col 

remainder = remainder >> 1 

self.table[dividen] = 
remainder & 0xFFFF # keep 16 bits 

else: 

print 'Use "forward" or 
"reverse"' 

exit() 

2 Python code developed and provided by Alex Rogers, (used 
with permission). 
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 def 
crcCalc(self,message,initVal=0x0000,
finalXOR=0x0000,bit_rev_in='n',bit_rev_out='
n',word_order='A'): 

for byte in message: 

if bit_rev_in == 'n': 

byte = ord(byte) 

elif bit_rev_in == 'y': 

byte = bit_rev8(ord(byte)) 

else: 

print 'Invalid input. Please use
y/n' 

index = (( initVal >> 8 ) ^ byte )
& 0xFF # chg shift L/R 

crc = (self.table[index] ^ 
(initVal << 8)) # chg shift L/R 

if bit_rev_out == 'n': 

      return '%x' % ((crc ^ finalXOR) & 
0xFFFF) # return 16 bit CRC 

elif bit_rev_out == 'y': 

return '%x' % (bit_rev16((crc ^ 
finalXOR) & 0xFFFF)) # return 16 bit rev CRC 

if __name__ == "__main__": 

a = Cyclic() 

a.crcInit(0x1021,order='forward') 

print
a.crcCalc('T',initVal=0x0000,finalXOR=0x0000
,bit_rev_in='n',bit_rev_out='n') 

Step 6 Distribution/Loading/Runtime 
Issues encountered in the loading of embedded 

code were covered in our previous paper.  

During distribution, the released embedded code 
is exposed to data handling and transfer threats. 
These threats also exist during the release process 
and are described, later, in the discussion of step 4. 
Likewise, the EDC/CRC appended during the 
software build could be expected to cover these 
unprotected gaps in the distribution process. 

During runtime, if the data protected by the 
CRC is exposed to 100% noise, then there is a 100% 
probability of failure [23]. 

During runtime, using an ARQ strategy in a 
noisy environment, the quantity of retries can cause 

an unacceptable impact on throughput [1].  For 
example, in a sufficiently noisy environment, using 
only an error detection strategy, a resetting system 
may never reboot, because it always fails the CRC 
comparison. 

Step 7 Historical Data Collection/Maintenance/ 
Modifications 

In step 6, there were cases where noise caused 
an unacceptable impact on the system.  While it may 
be impossible or impractical to eliminate the risk due 
to noise in all cases, collecting historical data during 
runtime is a common practice for characterizing a 
channel. Asynchronous communications devices are 
designed to provide data transfer statistics to 
embedded software, such as, framing errors, 
overruns, underruns, parity errors, etc.  One highly 
recommended reference, [9], makes a comment that 
these statistics are of little value, we disagree for 
safety-critical systems.  The incorporation of the 
collection of these statistics into the system design 
and maintenance strategy could support claims of 
bounds on channel noise and provide early warnings 
of degrading hardware components to vehicle health 
maintenance systems.  

Step 8 Repeating Steps 1 Through 6 
When necessary modifications are discovered, 

steps one through six are re-entered with proper 
authorization and notifications, which should result in 
a new set of unique CRCs. If by the extremely 
remote chance it doesn’t, a procedural step could be 
in place to make another modification that forces a 
unique set, before approving the release.  In other 
words, check all the new CRC’s uniqueness with 
respect to the previous ones before approving a 
release. 

Step 9 Archival/End-of-life 
DO-178B has data retention, data retrieval, and 

integrity control requirements that could be partially 
met by the uniqueness and protection provided by the 
CRC(s) traced to the versions.  This practice may, 
already, be the de facto standard.  File sizes are 
always increasing.  The maximum block size that can 
be protected by a 32-bit CRC is 512MB. The 
maximum block size that an algorithm will 
maximally protect, in general, is a necessary 
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parameter to be included in standards, guidance, and 
specifications to assist developers and system 
verifiers in showing compliance with safety 
requirements.  

Using an FEC strategy is recommended for the 
data storage of archives [1].  Data storage equipment 
typically uses an FEC strategy. We are 
recommending a separate FEC strategy to cover the 
gaps in data transference and elsewhere. 

Step 10 New Generation Inclusion 
(Reuse)/OTS (Off-the-Shelf) 

Satisfying the data retrieval requirements 
mentioned in step 9, apply to data retrieved for the 
purpose of reuse and/or off-the-shelf.  Verifying and 
identifying the code with the CRC before reuse, or 
use as off-the-shelf, could be included in a guidance 
checklist. 

Discussion of “The Journey” 
We will now revisit and further discuss some of 

the benefits, issues, and proposed improvements of 
CRC usage that arose in the journey steps, 
enumerated in the previous section. 

First, step 1.1 (a) proposes using an appropriate 
control strategy.  At least two types of strategies 
exist, a FEC and a ARQ.  FEC is recommended for 
data storage and some hybrid systems.  ARQ is 
common in communications [24, 25].  The ARQ 
strategy assumes the existence of a feedback 
mechanism with the ability to retransmit until a 
reliably correct transfer has been completed.  In long 
term data storage or in flight, the CRC over 
embedded code doesn’t have a practical, suitably 
reliable feedback path.  In a noisy environment, at 
35,000 feet and 35° LAT, even a dual-redundant 
system could fail to reboot either side, after a RESET 
or failover, which employ only an error detection 
(ARQ) strategy. 

In step 3, there was a table of residues (CRCs) 
provided, to assist during integration, of results from 
improperly implemented algorithms or from using 
different parameters. 

In step 4, it was pointed out that a CRC could be 
used for both the improved identification and 
enhanced integrity of embedded code for its 
versioning. One of the hazards during the release 

process is the handling of data.  For example, if data 
is transferred to a removable USB storage device and 
then the device is removed before a cached write has 
been completed, the data could be corrupted.  There 
are warnings about this practice, but it is commonly 
ignored.  For another example, if data is transferred 
on a network, the network probability of an 
undetected error may exceed safety requirements for 
critical software.  The EDC/CRC appended during 
the software build could be expected to cover these 
unprotected gaps in a release process.  The build 
appended CRC is the typical risk mitigation measure 
used for these scenarios. 

In step 5, we saw some rules of thumb that could 
assist in the verification of table-driven algorithms, 
by inspection.  In addition, we saw that there exist 
alternate methods of calculating the CRC of a given 
message.  Three alternates were provided, synthetic 
division, symbolic polynomial long division in a 
Mathematic procedure, and a Python language 
procedure. 

In step 8, a procedure was described for 
handling the situation of a build of two different 
versions resulting in identical CRC(s).  Most often, 
when the CRC(s) are the same for two subsequent 
versions, it indicates that the CRC(s) are not actually 
being calculated over new versions of the embedded 
code, but rather, they are being ‘hard-coded’ into the 
code. Again, in our opinion, this is an unacceptable 
practice, “The CRC Compromise.” 

Conclusions 
While it may be impossible or impractical to 

design a completely hazard-free system, any 
remaining threat from residual hazards must be 
acceptable and acknowledged [20]. 

Error control safety analysis, development, and 
verification are different from the same done for 
either hardware or software, in some respects.  First, 
hardware has a long established means for predicting 
the probabilities of component and system failures, 
but software doesn’t.  So for software, DO-178B is 
considered as a means of acceptance of software 
systems by regulators, and with good results.  DO
178B is a design assurance based on controlling the 
process of software development. However, software 
algorithms for error control, which currently fall 
under DO-178B, are between the two, hardware and 
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software.  Probabilities for EDCs can be analyzed 
and calculated outside the software development 
process, and thus might be shown to satisfy 
regulations at a system level by an alternate means, 
assuming compliance with some future established 
guidance. 

As we have seen, the EDC/CRC is called upon 
to identify and protect from threats and hazards, 
encountered along the journey, its embedded code 
cargo, from the build to end-of-life, and then again, 
possibly, in reuse. Its journey could literally be 
thousands or millions of miles in distance and 
decades in time, exposed to failures in strategy, 
storage retrieval, uncontrolled noisy environments, 
mistaken identity, unprotected gaps in transference, 
write caching errors, automatic translations, operating 
system timing, etc. 

As a conclusion, it is advocated: 

•	 studies be conducted for determining and 
defining the size and scope of unsuccessful 
completions versus successful 
completions; 

•	 collect best practices from advanced 
industries (i.e., disk, processor, and 
communications); 

•	 research and publish best practices and 
suggest remedies for unsuccessful ones; 

•	 incorporate the results in the development 
and adoption of supplements for governing 
documents that provide guidance, 
standards, and/or specification information 
for safety assessment, system design and 
development; 

•	 establish metrics for their usage by 
reference; 

•	 coordinate theses activities, as appropriate, 
within the industry and government; 

•	 disseminate the conclusions to the public; 
•	 follow up on their impact and return on 

investment; and 
•	 provide assistance with the technology 

transfer to other interested industries. 
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