

PROPOSING IMPROVEMENTS TO AVOID THE CRC COMPROMISE
AND THE SILENT SPECIFICATION
Cleon Rogers, Consultant, Little Rock, Arkansas

Abstract
In this paper we examine the issues and benefits

associated with the use of cyclic redundancy checks
(CRC)s that manifest during the later phases of
safety-critical software development projects. We
look at some less obvious details that will potentially
increase return on investment (ROI), avoid common
DO-178B certification planning and design
difficulties, as well as, speed development and
integration. We propose software build process
improvements with promise to improve version
integrity, executable integrity, version identification,
and executable identification. We examine the role
of CRCs in software configuration management
(SCM) and propose their potential for partial
satisfaction of DO-178B objectives, like traceability.
We look at time-saving steps for integrating with
systems that use one of three standard algorithms. Of
particular interest, we provide a table of residues
from faulty algorithms and their likely causes and
remedies, and provide overlooked tips for
asynchronous communication devices to aid in the
late development phase. There are analysis and data
collection techniques proposed to support initial data
transfer error rate claims in the early assessment of
system integrity and availability, and to show the
satisfaction of established bounds.

Introduction
Successfully completing the development of

embedded error detection and correction (EDC), and
doing it faster, cheaper, and better is obviously
possible when using experts [1,2,3]. To make the
success more likely, in general, for future designs
using these ubiquitous EDCs, like CRCs, is a goal of
this paper, through the potential of improved
standards, specifications, and guidance. The number
of unsuccessful completions is unknown and, in the
opinion of the author, their identification needs to be
established. Likewise, a turn-key “checklist” type of
solution could supplement existing data in
specifications, thus reducing the effects of the “Silent
Specification,” (a specification missing the necessary

details for successful completion without consulting
subject matter experts in the late development phase).
Better, more complete, specifications prevent short
circuits to release from becoming the driving current
to the “CRC Compromise.” We define the CRC
Compromise as a situation where the error control (or
CRC) has been disabled, by either turning its
calculation and comparison off, or by using a pre
calculated receiver-end, “actual” CRC value that will
always match the transmitter-end “expected” value.
With a silent specification and/or lacking standard
guidance, this activity might pass through
certification. We gain so much, and economically,
from using the robustness of error control correctly,
(we present some here), that these hazards should be,
in our opinion, recognized and prevented by future
guidance. As more functionality is moved from
mechanical and electrical systems to embedded
electronic and software systems, the protected cargo
(embedded code) must be executed dependably.

The paper is organized by following the life
cycle steps of an embedded code, which will be
partially protected during runtime by an appended
CRC (or multiple CRCs). Along the way, other
potential benefits and issues of CRC usage are
summarily noted, as they arise. Finally, we end with
the protection and identification provided to the code
in data storage archives of the configuration
management versions and their retrieval for
subsequent usage in any new generation
developments. (Please note that following the path
of embedded code is for organizational purposes.
The collection of CRCs for a complete system may
include the ones covering source files, etc.) We
categorize the path into ten steps, some integral, for
reference:

A Typical Journey of Our Embedded Code
Step 1: Specifications/Standards/Planning/Design/

Develop/Build/Make

Step 2: Version Control/Project Management

Step 3: Module/Interface Testing

978-1-4244-4078-8/09/$25.00 ©2009 IEEE. 6.B.4-1

http:978-1-4244-4078-8/09/$25.00

Step 4: Release/CM/QA

Step 5: Formal Verification/Validation/ Certification

Step 6: Distribution/Loading/Runtime

Step 7: Historical Data Collection/ Maintenance/
Modifications

Step 8: Repeat steps 1 through 6 for modifications

Step 9: Archival/End-of-life

Step 10: New Generation Inclusion (Reuse)

Background
Background to the current subject matter was

provided in our previous paper [4]. Whereas the
previous paper focused on issues surrounding the
field-loading of software, this paper expands on
issues and benefits of error control, in a broader
sense, to aid non-experts in their usage, and to raise
awareness of the potential for improvements to
standards and guidance.

Methods
For this paper, we collected and analyzed

information from text books, research papers, the
internet, lessons learned on previous projects,
standards, regulations, as well as some that may be
new, at least in the collection [5-12].

The Journey

Step 1.1 Specification
Proposed for inclusion in a specification,

standard, or elsewhere are:

(a) require 	an appropriate error control
strategy [1];

(b) consider the common mode for the CRC
covering the executable code residing in a
data storage archive of software versions
in dual redundant systems [13];

(c) consider stating the message block size
minimum, maximum, and size restrictions
for the chosen polynomial; include the
message length as a parameter to the
calculation routine [14,15];

(d) establish restrictions on channel noise by
setting bounds for bit error rates (BER);

(e) requiring	 compliance with improved
standards covering error control;

(f) requiring 	research references and
sourcing for chosen polynomials and
implementations; or improved standards
and guidance;

(g) restricting 	processor selections with
instruction sets that affect CRC
implementations, for instance, left/right
shift and Exclusive OR;

(h) consider requiring hardware counters for
all jumps through RESET, subsequent to
the last scheduled maintenance reading
and clearing of counters;

(i) consider requiring the collection of error
statistics on data transfers, such as, retries,
overruns, parity errors, underflow, framing
errors, timeouts, length errors, etc.

(j) specifying	 protocol bit, byte, word
ordering and other data used in the CRC
calculation of a protocol packet;

(k) stating the 	endianess of the chosen
processor and coordinating with the CRC
algorithm implementation;

(l) include a runtime verification method of
table entries of any table-driven
algorithms; and

(m) several 	references provide additional
standard-type parameters for CRC
implementations, such as, stating the initial
CRC value, final XOR value, forward or
reverse algorithms, padding, flushing,
word alignment, etc. [12, 10, 9].

Step 1.2 Standards
We will cover later, two 16-bit standards, CRC

16 and CCITT-16 and one 32-bit standard, CRC-32.
It is recommended that standards be augmented with
information on block size restrictions, their effects on
the probability of undetected errors, and the patterns
for detectable and undetectable errors (i.e., random
and/or burst), for future designs.

6.B.4-2

Step 1.3 Planning
An inclusion to the basis of certification in the

Plan for Software Aspects of Certification (PSAC) is
proposed to reference the specification and an
improved CRC Standard for agreement on the error
control usage to partially satisfy identification and
integrity requirements.

Step 1.4 Design/Develop
Using the information collected from the

specification, standards, PSAC, etc. the EDC/CRC
software or system developer should be able to select,
reference, and specify one of the many available
peer-reviewed, published, standards-based
implementations that satisfy the requirements, that is
unambiguous to implement, accurate, and that is
verifiable. Tables, from table-driven
implementations, and CRC algorithms come as
matching sets, such as, a “forward” 16-bit table is
coupled with a forward 16-bit algorithm, both using
the same polynomial. One possible implementation
hazard would use the 16-bit table from one algorithm
with the calculation algorithm from another.

Step 1.5 Build/Make
In the ‘make’ of systems, utilizing table-driven

algorithms, the table generator code could be
exercised during every build. One way is to verify a
match of the new table, when created, in the build
with the table that was archived in the previous
version. In addition, the source files used in the
previous build could have their file CRC values
recalculated and verified before applying the deltas to
these files and using them in the new build.
Periodically, older versions in SCM could have all
CRCs recalculated and verified, also. For added
assurance, run a pass of the executable with each byte
fed to the algorithm bit-reversed and store the result
in the version description document, along with the
normal one. In addition, the forward and bit-reversed
CRCs could be embedded in the executable code. It
is stated here without proof that this two-pass
method, with what we’ll call Secondary CRC(s),
could approach a doubling of the protection against
undetected errors, with a negligible increase in
complexity.

In the version description document or software
configuration index, include the executable’s CRC(s)

with the version number. This provides a unique
version identification and a traceability link from the
executable to the version, used for partial satisfaction
of DO-178B objectives. If this same ID information
is read and displayed, it could provide executable
identification, another DO-178B objective. The
uniqueness of the version and executable
identification improves integrity.

Step 1.6 Unit Test
Consider incremental development of a unit test,

starting with a simple message, such as, ‘T’, for the
byte-at-a-time methods using table lookups. The
byte character, ‘T’, will result in an index fetch into
the table with the addition of pre- and post-
conditioning. Note that this index is bit reversed by
some algorithms. Unit testing with word or longer
messages should match machine byte and word
ordering specifications of the implementation.
Several practical references give step-by-step
instructions with sample code for some of the
standard polynomials. When developed, the verified
results could be recorded against published peer-
reviewed examples [16-19]. If it hasn’t been done
previously, messages and CRCs could be matched
against a polynomial or synthetic division manually,
or with the aid of a computer algebra system (see
step 5).

Step 2 Version Control & Project Management
Consider controls to prevent unauthorized

‘restores’ from backups of the version control
database that could lose newly identified hazards and
safety discrepancies that are to be reported to
program management and the developer.

Step 3 Module/Interface Testing
In Table 11, the first column, “Poly”, contains

the polynomial coefficients. Column 1 contains the
residue (CRC) obtained using the character, ‘T’,
(hexadecimal value, 0x54), with parameters: all zeros
for the initial value; zeros for the final exclusive or
(XOR); not bit reversed on input; and not bit reversed
on output. Going from column 1 to column 2:
reverse the bits in each input byte, reverse the bits in

1 Data for table entries provided by Alex Rogers, (used with
permission).

6.B.4-3

each output byte; from 2 to 3: each output byte is not
reversed; from 3 to 4: use all ones for the initial
value, each output byte is reversed; from 4 to 5: each
input byte is reversed, each output byte is not
reversed; from 6 to 7: each input byte is not reversed.
If a match is not found in the expected column and is
found in another column, follow the steps for the two
columns, from left to right, and undo the incorrect
steps in the code and/or data.

Table 1. Faulty Residues and Their Parameters

Step 4 Release/CM/QA
The data storage of software life-cycle data

(SLCD) has not necessarily been adequately
protected with a CRC that is designed for an ARQ
system [1], and becomes a common hazard in the
extraction of released executable code from storage
and then installed on a dual-redundant system (see
Figure 1). Any residual risk must be knowingly
accepted, according to assessment practices of some
system safety standards [20].

Poly 1 2 3 4 5 6 7
1021 1A71 14A1 8528 1B26 81DF 9B27 047E
8408 9AF8 1AB1 8D58 11BA 1452 A277 B5D7
A001 C06E EC06 6037 61FC FBF9 3F86 9FDF
8005 81FB FF01 80FF BFBE 9F3E 8202 8306

Figure 1. Overall Data Transfer System (ODTS) – Dual Redundant

6.B.4-4

It is proposed that the CM process associate a
CRC (or EDC) with the version number included in
the SLCD, such as, a version description document
(VDD), equipment specification, or software
configuration index (SCI). The version data should
include the software life cycle environment source
code data that is used for calculating and embedding
CRCs. (see section 11.15 of Software Considerations
in Airborne Systems and Equipment Certification)
[21]. For table-driven algorithms, this source data
should include the table, the source code that
generates and verifies the table, and the mechanism
that prevents the table entries from accidental and/or
unauthorized alterations. It is recommended that the
table generation be exercised for every release.
Periodic recalculation of all CRCs supports the
satisfaction of data recovery and retention objectives.

For a more critical embedded system, one could
run another pass of the algorithm with a different
polynomial and include the new CRC with the
original; or run a pass with each of the bytes, bit-
reversed, and store this CRC in addition to the
original. (This technique, using Secondary CRC(s),
was first mentioned in step 1.5, but to serve a
different primary purpose, integrity vs.
identification.)

Step 5 Formal V&V/Certification
Rules of thumb for inspection of the tables in

byte-oriented table-driven methods:

1.	 The first table entry is generally all zeros.

2.	 The second entry is a repeat of the CRC
polynomial coefficients.

3.	 For reversed methods, the CRC polynomial
coefficient repeat is located at hex address
0x80.

4.	 Also note, for a one byte message equal to
hex 0x01, the calculation should return the
first table entry with pre- and post
conditions, and reflections applied.

Polynomial or synthetic division of the message
by the CRC polynomial (generator polynomial) can
be done manually to confirm the results of an
algorithm on a given message:

Polynomial Division over a Field [22]
Let the message be m(x), the CRC polynomial

be p(x), and the quotient is q(x) with the remainder of
r(x), then say

i() = ∑
k

ci x ,m x
i=0

l
ip()x =∑di x , over a field, k ≥ l ≥ 0 ,

i=0

dl ≠ 0 ,

so

l l−1 0 k k −1 0dl x + dl−1x +L+ d0 x c x + c x +L+ c xk k −1 0

has
k−l

() = ∑ andq x qi x
i

i=0

l−1
ir()x =∑ ri x

i=0

satisfying the Euclidean property over an
integral domain,

m(x) = p() () ()x q x + r x ,
deg[()] < deg p x].r x [()

Step a:

For(n = k − l; n = 0; n − −)
cl+nq = n dl

For(j = l + n −1; j = n; j − −)
c j = c j − qnd j−n

Step b:
return((qi ; i = 0,1,L, k − l) (, ri ; i = 0,1,L, l −1))
from step a, where ri = ci.

The CRC to be appended to the message, m(x),
is just the coefficients of r(x). (Note: For binary and
monic cases, dl = 1, and thus, the synthetic division is

6.B.4-5

performed using only subtraction and multiplication,
no division. Also, returning q(x) is not necessary, it
could be discarded.)

Provided below is a procedure using
Mathematica that could ease the tediousness of the
modulo-2 polynomial long division for a long
message. The provided procedure is demonstrated
with an example from Joe Campbell’s book [9]:

<< Algebra`PolynomialPowerMod`

[ASCII Message char 'CfyU' w/bit 8 for EVEN
parity, 0x1021 Divisor (11021)]

msgBcoef = {1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0,
1, 1, 1, 1, 1, 0,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,

 0}

msgBinPoly = Apply[Plus, msgBcoef*Table[x^n, {n,
47, 0, -1}]]

divisorCoef = {1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1}

divisorPoly = Apply[Plus, divisorCoef*Table[x^n,
{n, 16, 0, -1}]]

remPolyIsCRC =
PolynomialRemainder[msgBinPoly, divisorPoly,
x, Modulus -> 2]

msgCcoefWithCRC =

 BitXor[msgBcoef,

 Join[Table[0, {n, 1, 32}],
Reverse[CoefficientList[remPolyIsCRC, x]]]]

msgCWithCRCasPoly = Apply[Plus,
msgCcoefWithCRC*Table[x^n, {n, 47, 0, -1}]]

zeroRemQ =

 PolynomialRemainder[msgCWithCRCasPoly,

divisorPoly, x, Modulus -> 2]

In addition, a CRC procedure is provided2 in the
Python language:

class Cyclic():

def __init__(self):

self.table = [None]*256

def
crcInit(self,poly,order='forward'):

for dividen in range(256):

remainder = dividen << 8

if order == 'forward':

for bit in range(8):

if remainder & 0x8000: #
don't skip col in long div (topbit)

remainder = (remainder <<
1) ^ poly

else: # skip col, divisor >
remainder, for this col

remainder = remainder << 1

self.table[dividen] =
remainder & 0xFFFF # keep 16 bits

elif order == 'reverse':

for bit in range(8):

if remainder & 0x0001: #
don't skip col in long div (botbit)

remainder = (remainder >>
1) ^ poly

 else: # skip col, divisor >
remainder, for this col

remainder = remainder >> 1

self.table[dividen] =
remainder & 0xFFFF # keep 16 bits

else:

print 'Use "forward" or
"reverse"'

exit()

2 Python code developed and provided by Alex Rogers, (used
with permission).

6.B.4-6

 def
crcCalc(self,message,initVal=0x0000,
finalXOR=0x0000,bit_rev_in='n',bit_rev_out='
n',word_order='A'):

for byte in message:

if bit_rev_in == 'n':

byte = ord(byte)

elif bit_rev_in == 'y':

byte = bit_rev8(ord(byte))

else:

print 'Invalid input. Please use
y/n'

index = ((initVal >> 8) ^ byte)
& 0xFF # chg shift L/R

crc = (self.table[index] ^
(initVal << 8)) # chg shift L/R

if bit_rev_out == 'n':

 return '%x' % ((crc ^ finalXOR) &
0xFFFF) # return 16 bit CRC

elif bit_rev_out == 'y':

return '%x' % (bit_rev16((crc ^
finalXOR) & 0xFFFF)) # return 16 bit rev CRC

if __name__ == "__main__":

a = Cyclic()

a.crcInit(0x1021,order='forward')

print
a.crcCalc('T',initVal=0x0000,finalXOR=0x0000
,bit_rev_in='n',bit_rev_out='n')

Step 6 Distribution/Loading/Runtime
Issues encountered in the loading of embedded

code were covered in our previous paper.

During distribution, the released embedded code
is exposed to data handling and transfer threats.
These threats also exist during the release process
and are described, later, in the discussion of step 4.
Likewise, the EDC/CRC appended during the
software build could be expected to cover these
unprotected gaps in the distribution process.

During runtime, if the data protected by the
CRC is exposed to 100% noise, then there is a 100%
probability of failure [23].

During runtime, using an ARQ strategy in a
noisy environment, the quantity of retries can cause

an unacceptable impact on throughput [1]. For
example, in a sufficiently noisy environment, using
only an error detection strategy, a resetting system
may never reboot, because it always fails the CRC
comparison.

Step 7 Historical Data Collection/Maintenance/
Modifications

In step 6, there were cases where noise caused
an unacceptable impact on the system. While it may
be impossible or impractical to eliminate the risk due
to noise in all cases, collecting historical data during
runtime is a common practice for characterizing a
channel. Asynchronous communications devices are
designed to provide data transfer statistics to
embedded software, such as, framing errors,
overruns, underruns, parity errors, etc. One highly
recommended reference, [9], makes a comment that
these statistics are of little value, we disagree for
safety-critical systems. The incorporation of the
collection of these statistics into the system design
and maintenance strategy could support claims of
bounds on channel noise and provide early warnings
of degrading hardware components to vehicle health
maintenance systems.

Step 8 Repeating Steps 1 Through 6
When necessary modifications are discovered,

steps one through six are re-entered with proper
authorization and notifications, which should result in
a new set of unique CRCs. If by the extremely
remote chance it doesn’t, a procedural step could be
in place to make another modification that forces a
unique set, before approving the release. In other
words, check all the new CRC’s uniqueness with
respect to the previous ones before approving a
release.

Step 9 Archival/End-of-life
DO-178B has data retention, data retrieval, and

integrity control requirements that could be partially
met by the uniqueness and protection provided by the
CRC(s) traced to the versions. This practice may,
already, be the de facto standard. File sizes are
always increasing. The maximum block size that can
be protected by a 32-bit CRC is 512MB. The
maximum block size that an algorithm will
maximally protect, in general, is a necessary

6.B.4-7

parameter to be included in standards, guidance, and
specifications to assist developers and system
verifiers in showing compliance with safety
requirements.

Using an FEC strategy is recommended for the
data storage of archives [1]. Data storage equipment
typically uses an FEC strategy. We are
recommending a separate FEC strategy to cover the
gaps in data transference and elsewhere.

Step 10 New Generation Inclusion
(Reuse)/OTS (Off-the-Shelf)

Satisfying the data retrieval requirements
mentioned in step 9, apply to data retrieved for the
purpose of reuse and/or off-the-shelf. Verifying and
identifying the code with the CRC before reuse, or
use as off-the-shelf, could be included in a guidance
checklist.

Discussion of “The Journey”
We will now revisit and further discuss some of

the benefits, issues, and proposed improvements of
CRC usage that arose in the journey steps,
enumerated in the previous section.

First, step 1.1 (a) proposes using an appropriate
control strategy. At least two types of strategies
exist, a FEC and a ARQ. FEC is recommended for
data storage and some hybrid systems. ARQ is
common in communications [24, 25]. The ARQ
strategy assumes the existence of a feedback
mechanism with the ability to retransmit until a
reliably correct transfer has been completed. In long
term data storage or in flight, the CRC over
embedded code doesn’t have a practical, suitably
reliable feedback path. In a noisy environment, at
35,000 feet and 35° LAT, even a dual-redundant
system could fail to reboot either side, after a RESET
or failover, which employ only an error detection
(ARQ) strategy.

In step 3, there was a table of residues (CRCs)
provided, to assist during integration, of results from
improperly implemented algorithms or from using
different parameters.

In step 4, it was pointed out that a CRC could be
used for both the improved identification and
enhanced integrity of embedded code for its
versioning. One of the hazards during the release

process is the handling of data. For example, if data
is transferred to a removable USB storage device and
then the device is removed before a cached write has
been completed, the data could be corrupted. There
are warnings about this practice, but it is commonly
ignored. For another example, if data is transferred
on a network, the network probability of an
undetected error may exceed safety requirements for
critical software. The EDC/CRC appended during
the software build could be expected to cover these
unprotected gaps in a release process. The build
appended CRC is the typical risk mitigation measure
used for these scenarios.

In step 5, we saw some rules of thumb that could
assist in the verification of table-driven algorithms,
by inspection. In addition, we saw that there exist
alternate methods of calculating the CRC of a given
message. Three alternates were provided, synthetic
division, symbolic polynomial long division in a
Mathematic procedure, and a Python language
procedure.

In step 8, a procedure was described for
handling the situation of a build of two different
versions resulting in identical CRC(s). Most often,
when the CRC(s) are the same for two subsequent
versions, it indicates that the CRC(s) are not actually
being calculated over new versions of the embedded
code, but rather, they are being ‘hard-coded’ into the
code. Again, in our opinion, this is an unacceptable
practice, “The CRC Compromise.”

Conclusions
While it may be impossible or impractical to

design a completely hazard-free system, any
remaining threat from residual hazards must be
acceptable and acknowledged [20].

Error control safety analysis, development, and
verification are different from the same done for
either hardware or software, in some respects. First,
hardware has a long established means for predicting
the probabilities of component and system failures,
but software doesn’t. So for software, DO-178B is
considered as a means of acceptance of software
systems by regulators, and with good results. DO
178B is a design assurance based on controlling the
process of software development. However, software
algorithms for error control, which currently fall
under DO-178B, are between the two, hardware and

6.B.4-8

software. Probabilities for EDCs can be analyzed
and calculated outside the software development
process, and thus might be shown to satisfy
regulations at a system level by an alternate means,
assuming compliance with some future established
guidance.

As we have seen, the EDC/CRC is called upon
to identify and protect from threats and hazards,
encountered along the journey, its embedded code
cargo, from the build to end-of-life, and then again,
possibly, in reuse. Its journey could literally be
thousands or millions of miles in distance and
decades in time, exposed to failures in strategy,
storage retrieval, uncontrolled noisy environments,
mistaken identity, unprotected gaps in transference,
write caching errors, automatic translations, operating
system timing, etc.

As a conclusion, it is advocated:

•	 studies be conducted for determining and
defining the size and scope of unsuccessful
completions versus successful
completions;

•	 collect best practices from advanced
industries (i.e., disk, processor, and
communications);

•	 research and publish best practices and
suggest remedies for unsuccessful ones;

•	 incorporate the results in the development
and adoption of supplements for governing
documents that provide guidance,
standards, and/or specification information
for safety assessment, system design and
development;

•	 establish metrics for their usage by
reference;

•	 coordinate theses activities, as appropriate,
within the industry and government;

•	 disseminate the conclusions to the public;
•	 follow up on their impact and return on

investment; and
•	 provide assistance with the technology

transfer to other interested industries.

References
[1] Lin, Shu, Daniel J. Costello, Jr, 1983, Error
Control Coding: Fundamentals and Applications,
Englewood Cliffs, New Jersey, Prentice-Hall, Inc.

[2] Wolf, Jack Keil, Robert D. Blakeney, II, 1-Sep
88, An Exact Evaluation Of The Probability Of
Undetected Error For Certain Shortened Binary CRC
Codes, IEEE Transactions On Communications, pp.
287-292.

[3] Berlekamp, Elwyn R., 1968, Algebraic Coding
Theory, McGraw Hill, Inc.

[4] Rogers, Cleon, 29-Oct-08, Choosing A CRC &
Specifying Its Requirements For Field-Loadable
Software, 27th Digital Avionics Systems Conference,
Minneapolis, MN.

[5] Fujiwara, Tohru, Tadao Kasami, Atsushi Kital,
Shu Lin, 1-Jun-85, On the Undetected Error
Probability for Shortened Hamming Codes, IEEE
Transactions On Communications, Vol Com-33 No
6, pp. 570-574.

[6] Peterson, W.W., D.T. Brown, 1-Jan-61, Cyclic
Codes For Error Detection, Proceedings of the IRE,
pp. 228-235.

[7] Wicker, Stephen B., 1995, Error Control
Systems for Digital Communication and Storage,
Upper Saddle River, New Jersey, Prentice-Hall, Inc.

[8] Perez, Aram, 1-Jun-83, Byte-wise CRC
Calculations, IEEE Micro, pp. 40-50.

[9] Campbell, Joe, 1987, C Programmer’s Guide to
Serial Communications, Carmel, Indiana, Macmillan,
Inc.

[10] Nelson, Mark, 1992, Serial Communications A
C++ Developer's Guide, USA, M&T Publishing, Inc.

[11] Schwaderer, W. David, 1992, C Programmer's
Guide to NetBIOS, IPX, and SPX, Carmel, Indiana,
Howard W. Sams & Company.

[12] Williams, Ross, 1993, A Painless Guide to
CRC Error Control Codes, www.ross.net/crc.

[13] Storey, Neil, 1996, Safety-Critical Computer
Systems, Essex, England, Addison Wesley Longman
Ltd.

[14] Stone, Jonathan, Michael Greenwald, Craig
Partridge, James Hughes, 1-Oct-98, Performance of
Checksums and CRC's over Real Data, IEEE/ACM

6.B.4-9

Transactions on Networking, Vol 6 No 5, pp. 529
543.

[15] MacWilliams, F. J., N. J. A. Sloane, 2006, The
Theory of Error-Correcting Codes, 12th Ed.,
Amsterdam, The Netherlands, Elsevier B. V.

[16] Leung, C., K. A. Witzke, 1-Dec-90, On Testing
for Improper Error Detection Codes, IEEE
Transactions On Communications, Vol 38 No 12, pp.
2085-2086.

[17] Ramabadran, Tenkasi V., Sunil S. Gaitonde, 1
Aug-88, A Tutorial on CRC Computations, IEEE
Micro, pp. 62-74.

[18] Shouse, D. V., 1-Apr-85, "On the Fly" CRC-16
Byte-wise Calculation for 8088-based Computers,
IEEE Micro, pp. 67-75.

[19] Witzke, K. A., C. Leung, 1-Sep-85, A
Comparison of Some Error Detecting CRC Code
Standards, IEEE Transactions On Communications,
Vol Com-33 NO 9, pp. 996-998.

[20] MIL-STD-882D, 2000, Standard Practice for
System Safety, HQ AFMC/SES, Wright Patterson
AFB, OH.

[21] Software Considerations in Airborne Systems
and Equipment Certification, 1992, SC-167,
Washington, DC, RTCA, Inc.

[22] Akritas, A.G., 1989, Elements of Computer
Algebra with Applications, John Wiley & Sons, Inc.

[23] Shannon, C.E., 1948, A Mathematical Theory of
Communication, The Bell System Technical Journal,
Vol 27, pp. 379-423, 623-656.

[24] IEEE Std 802.3-2005, 2005, IEEE, pg 52.

[25] Hammond, J.L., J.E. Brown, S.S. Liu, 1975,
Development of a Transmission Error Model and an
Error Control Model, RADC-TR-75-138, Griffiss
AFB, NY, RADC (RBC).

Email Addresses
Cleon Rogers: rogers@swbell.net
or cleonrogers@gmail.com

28th Digital Avionics Systems Conference
October 25-29, 2009

6.B.4-10

mailto:rogers@swbell.net�
mailto:cleonrogers@gmail.com�

	Abstract
	Introduction
	A Typical Journey of Our Embedded Code

	Background
	Methods
	The Journey
	Step 1.1 Specification
	Step 1.2 Standards
	Step 1.3 Planning
	Step 1.4 Design/Develop
	Step 1.5 Build/Make
	Step 1.6 Unit Test
	Step 2 Version Control & Project Management
	Step 3 Module/Interface Testing
	Step 4 Release/CM/QA
	Step 5 Formal V&V/Certification
	Step 6 Distribution/Loading/Runtime
	Step 7 Historical Data Collection/Maintenance/ Modifications
	Step 8 Repeating Steps 1 Through 6
	Step 9 Archival/End-of-life
	Step 10 New Generation Inclusion (Reuse)/OTS (Off-the-Shelf)

	Discussion of “The Journey”
	Conclusions
	References
	Email Addresses
	=============
	Table of Contents

