Characterizing Weyl-mediated Magnetic Interactions in Non-centrosymmetric Rare-earth Materials

Patrick Chen

Lab: NIST Center for Neutron Research(NCNR)

Mentor: Jonathan Gaudet

Goal

Explore novel behaviors induced by Weyl electrons in Weyl semimetals through modeling and probing magnetic structure.

Background Information

Spin and Magnetism

- Spin is an inherent property of elementary particles
 - Can be thought of as a "tiny magnet" for the purposes of this presentation
- Large regions of aligned spin are called ferromagnetic domains and result in a net magnetization

Magnetic Interactions

Exchange - Local interaction of neighboring atoms through overlapping wavefunctions

Ferromagnetic

Antiferromagnetic

Anisotropy - Preferred axis of alignment

Dipole/Demagnetization -Long range effect due to the net

magnetization

Multiple Domains and Domain Walls

- A single crystal can have multiple domains of differing alignments.
 - Transition region is called a domain wall

What is special about Weyl semimetals?

- Weyl electrons
 - o "Massless" highly mobile
 - Chiral "handedness"
 - Mediates the Dzyaloshinskii-Moriya(DM) interaction that tends to misalign neighboring spins

Neutron Scattering

- Why is it useful?
 - Measures magnetic and structural properties
 - Highly penetrating, so it is able to measure **bulk** properties
 - Sensitive on nanometer to micron length scales(for Small Angle Neutron Scattering(SANS))
 - Ångstroms for diffraction

High-q

Low-q

Modeling CeAlSi Striped Domains

Comparison to Neutron Scattering Data

Simulated Scattering of Bilayer

Measured Scattering Data

OOMMF Toolkit and Procedures

- Initiate from a random configuration of spins
- "Solves" the spin configuration by minimizing energy
- Should be thought of as a small part of a larger crystal

Modeling the DM Interaction

• Expectations

y

Ζ

- More domains, leading to stripes
- Chiral domain wall transitions

Red - Out of Plane(+x) Blue - Into Plane(-x)

Further Increased DM Interaction

- Destroys striped order
- Promotes vortices of spin- "skyrmions"

Red - Out of Plane(+x) Blue - Into Plane(-x)

Compounds of Interest

Singular Angular Magnetoresistance(SAMR)

T. Suzuki et al. Singular angular magnetoresistance in a magnetic nodal semimetal. Science 365,377-381(2019).DOI:10.1126/science.aat0348

Conclusion and Future Direction

Results

- Successfully modeled DM interaction.
 - Showed striped domains match experimental results.
- Mapped out the magnetic phase diagram in more detail relative to its Ge/Si content.

Future Direction

- Fit the model parameters to experimental data to understand the length scales of the interactions.
- Conduct more thorough measurements of CeAlGe to better understand its behavior

Acknowledgments

- Jonathan Gaudet
- Michael Donahue
- Summer Undergraduate Research Fellowship(SURF)
 - o Cara O'Malley
 - o Julie Borchers
 - o Susana Teixeira
 - Leland Harriger
- Oak Ridge National Laboratory(ORNL)

OOMMF User's Guide, Version 1.0

M.J. Donahue and D.G. Porter Interagency Report **NISTIR 6376**,

National Institute of Standards and Technology, Gaithersburg, MD (Sept 1999)

The Center for High Resolution Neutron Scattering (CHRNS) is a national user facility jointly funded by the NIST Center for Neutron Research (NCNR) and the National Science Foundation (NSF) under Agreement No. DMR-2010792

Questions?

Verification of the OOMMF Simulation

y

- Includes only the exchange, anisotropy and dipole interactions which are well understood.
 - Expect domain wall to process along the in/out-of-plane direction.

T. Suzuki et al.

,Singular angular magnetoresistance in a magnetic nodal semimetal.*Science***365**,377-381(2019).DOI:10.1126/science.aat0348