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Abstract—Most privacy risk assessment methodologies are
homegrown and qualitative. Numerical models generally
involve largely arbitrary quantifications. FAIR, a quanti-
tative risk model for information security related risks,
can be modified for privacy, providing more meaningful
measurements and supporting comparison of risks of similar
scenarios with varying controls to organizational tolerances.

Index Terms—privacy risk, FAIR, quantitative risk, risks
assessment

1. Introduction

What is risk? At an abstract level, it is a function of
threats, vulnerabilities those threats can exploit, and the
resulting adverse consequences. More fundamentally, it is
an effort to grapple with the uncertainties surrounding the
potential occurrence and impacts of particular events. At a
practical level, risk is an adverse consequence associated
with some indicator of the magnitude of severity and a
frequency of occurrence. If magnitude and frequency can
be quantified, the risk can be nominally quantified as
frequency times magnitude. To the extent these quanti-
ties reflect some objective grounding, statistical concepts
become applicable. If either of these cannot be quantified,
qualitative mappings are typically employed.

Privacy risks arise from interactions with individuals
or their proxies. Proxies can include, but are not nec-
essarily limited to, information about that individual, an
individual’s property or their friends and family. Where
there is an interaction, whether directly with an individual
or indirectly with an individual’s proxy, there is an oppor-
tunity for a threat to manifest itself, resulting in adverse
consequences to the individual if conditions permit.

There is a long-standing desire to quantify privacy
risks on the part of privacy professionals. Formal assess-
ment of privacy impacts has been a legal requirement
in various jurisdictions and contexts around the globe
for some time now, not least nowadays by the European
Union’s General Data Protection Regulation (GDPR) [1].
GDPR Article 25 specifically refers to the likelihood and
severity of risks, which, while not exclusive to quantitative
approaches, is certainly suggestive of them. Quantitative
approaches undoubtedly offer a number of attractive char-
acteristics, including relative ease of summarization and
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communication. One of these characteristics is the author-
itativeness that derives from quantification, as evinced by
other domains such as insurance, which have long exem-
plified the use of quantitative risk assessment. When done
systematically on an appropriate foundation, quantitative
risk assessment can be valuable, including as a comple-
ment to qualitative approaches. However, while attempts
have been made in this vein in the privacy domain, those
attempts have been halting and problematic.

These moves have often falsely equated quantification
with rigor. As a result, many approaches to quantification
of privacy risk have been characterized by a distinct lack
of rigor, their use of numerical values notwithstanding.
Arguably, a rigorous qualitative analysis is preferable to
a non-rigorous quantitative one, and analytical methods
exist for the former, e.g., [2]. However, rigorous quan-
titative approaches to privacy risk analysis are possible
as well. This paper describes one such approach, based
on Factor Analysis of Information Risk (FAIR), yielding
FAIR-Privacy (FAIR-P). While built upon FAIR, FAIR-P
incorporates adaptations specific to privacy and is there-
fore not simply the straightforward application of FAIR to
privacy. While the high-level constructs remain the same,
the specifics of several of them have been tailored to
address privacy. This is particularly the case for conse-
quences, which, for privacy purposes, requires bifurcation
to account for both the norm-violative act itself and the
potential secondary tangible results of that act.

The remainder of the paper is organized as follows.
Section 2 summarizes the history of privacy risk analysis
to properly situate the described approach within its larger
context. Section 3 provides an overview of FAIR and
FAIR-P. Sections 4 and 5 describe proposed quantification,
of frequency and severity respectively, within FAIR-P,
while Section 6 discusses some of the distinctions between
quantitative and qualitative risk assessments. Section 7
reviews three other privacy risk methodologies focused on
risks to individuals and compares them against the pro-
posed model. Section 8 offers some concluding thoughts.
An appendix in the long version of this paper shows an
application of the model to an example case study.

2. Short History of Privacy Risk Analysis

Privacy risk analysis is actually a relatively recent
way of conceptualizing privacy problems. Owing to the
longstanding notion of privacy as a value to be protected,
initial efforts to systematically analyze it in the context of
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specific laws, projects, and systems leveraged the con-
cept of an impact assessment, exemplified at the time
by environmental impact assessments [3]. Privacy impact
assessments (PIAs), in turn, leveraged Fair Information
Practice Principles (FIPPs), a set of principles which orig-
inated in a Code of Fair Information Practices identified
in the early 1970s in response to the US Governments
collecting and storing massive amounts of data about
individuals in government computer systems [4]. Use of
PIAs expanded and multiplied into many distinct though
quite similar versions, including [5], [6], [7]. GDPR [8]
continued this trend. While the impact assessment model,
when properly deployed, arguably engendered thoughtful
consideration of relevant privacy problems, as constructed
it also imposed two fundamental constraints.

The first, and more important, of these constraints has
been the reliance on and the embedding of FIPPs in PIA
instruments. While it is unsurprising that PIAs seized upon
FIPPs as the basis for their structure and analyses, the
absence at the time of viable alternatives obscured the
fact that a particular choice was being made. As used in
PIAs, FIPPs constitute an abbreviated form of risk model.
Risk models amount to structured templates of candidate
threats and/or vulnerabilities and/or consequences, pos-
sibly along with associated factors. (The US National
Institute of Standards and Technology (NIST) construes
risk models as sets of defined factors [8].) In principle,
any impact assessment (or risk management) framework
can utilize any relevant risk model. However, when a risk
model is embedded in a framework, its role and potential
alternatives can effectively become invisible.

The second constraint imposed by the structure
adopted by PIAs was the perceived nature of the impact
assessment construct itself. Impact assessments (nowadays
including social, human rights, and algorithmic assess-
ments) tend to be seen as value-based or value-protective,
distinguished from what are perceived as more techno-
cratic risk assessment approaches, such as those used in
the context of safety or security. The longstanding view
of privacy as being primarily grounded in law rather than
science or engineering reinforced this perceived distinc-
tion. However, as privacy increasingly manifested as a
property of complex socio-technical systems in addition
to being a civil liberties issue – as reflected by privacy
enhancing technologies (PETs) and Privacy by Design
(PbD) – the inadequacies of traditional PIAs and their
reliance on FIPPs became evident.

As a result, talk of a ”risk-based approach” to privacy
arose over the last decade. The proposed instruments of
this approach (e.g., [9] and [10]) reflected (usually infor-
mally) the perceived inadequacies of FIPPs: the absence of
social context, a procedural orientation that served the in-
terests of organizations more than those of individuals, and
their lack of any normative grounding. The development
of the bases of alternative privacy risk models has enabled
augmentation of FIPPs (e.g., Solove’s Taxonomy [11]) and
in some cases even replacement (e.g., NIST’s Privacy Risk
Assessment Methodology, PRAM [12]). In the latter case,
FIPPs, due to the compliance obligations they normally
represent, can effectively become requirements checklists
rather than a basis for risk analysis. It is also possible
to synthesize tailored privacy risk models from multiple
existing models, including FIPPs. (See, for example, the

risk model employed in a privacy risk analysis of a
proposed architecture for connected vehicles [13].)

While some approaches to privacy risk analysis are
quantitative, these have tended toward arbitrary quantifi-
cation detached from any objective grounding. Typically,
the analyst is required to score likelihood and impact on
an ordinal scale (often 1 - 10) in the absence of any
meaningful defined criteria (e.g., [8]). As a result, such
scoring is inevitably arbitrary and inconsistent. Therefore,
while such schemes generate numerical values for risk,
those values have no intrinsic meaning. There are viable
alternatives to this approach to quantification of privacy
risk, though. These include the adaptation of FAIR pre-
sented here.

3. Introduction to FAIR

Factor Analysis of Information Risk is a quantitative
risk analysis methodology for calculating information se-
curity risk [14]. FAIR breaks down risk into constituent
factors which, using probabilistic estimates, can be used
to estimate risks arising from information security events.
While most readers may be familiar with risk presented in
terms of likelihood and impact, FAIR uses a slight variant
of that: frequency and magnitude, typically measured on
an annualized basis and in dollars, respectively. Hence,
Risk = (frequency of loss events) × (magnitude of loss).

This paper modifies and expands upon FAIR to in-
troduce a quantitative methodology for assessing privacy
risks. Two key features distinguish this privacy version
from the original FAIR. First, FAIR looks at organizational
risks, whereas FAIR-P (privacy) addresses risks specifi-
cally to individuals. Many organizational activities create
an external effect on individuals that may not be fully
internalized by the organization. Organizational risks can
flow from privacy risks to individuals caused by organi-
zational activities, but our analysis principally centers on
the externalities imposed on individuals.

This is a key differentiator of the FAIR-P model
from other common risk models for credit, operational or
insurance risk. Those risk models consider multiple threat
actors (e.g., borrowers) against a single at-risk organiza-
tion (e.g., insurance company). Privacy risk is more akin
to safety risk: One or more threat actors against multiple
at-risk individuals.

The second distinguishing feature is that where FAIR
quantifies magnitude in financial terms, FAIR-P uses a
relative scale to rate severity of a privacy harm com-
bined with an additional consideration for the risks of
tangible harms flowing from the underlying activity. Since
the severity scale has a basis in the non-normativity of
the harm, surveys of affected individuals or experimental
studies would be the ideal way to scale the harm. Such
a survey aligns with the direction of Article 35(9) of
the EU General Data Protection Regulation which states
“Where appropriate, the controller shall seek the views
of data subjects or their representatives on the intended
processing, without prejudice to the protection of com-
mercial or public interests or the security of processing
operations”. In addition, where tangible adverse conse-
quences on the individual may arise, those are measured
in terms appropriate to the consequence such as monetary
terms for financial loss and as time for lost liberty. While
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some courts may make a habit of translating years of
incarceration into a financial figure for compensation for
wrongful imprisonment, just because you can assign an
arbitrary monetary figure to something does not mean
you should. Rather than talking in terms of tradeoffs in
dehumanizing dollar figures, tangible impacts should be
expressed in appropriate terms (such as deaths, suicides,
imprisonments, embarrassments, etc.). Balancing of in-
terests is not always best thought of in purely monetary
terms, especially given the externality of the impacts.

In calculating privacy risks, all quantifications in
FAIR-P use a probabilistic model based on empirical
data and/or appropriate standard distributions, rather than
specific numerical value. This is due to uncertainty in
assigning specific values to specific factors. If, in fact,
any factor is known with certainty, that specific value
could be substituted. The values used are also specific to a
category of at-risk individuals within whatever system one
is examining. We are not looking at specific individuals
but rather risks to a group that face similar threats (such as
”users of an app” or ”bystanders”). Because a probabilistic
model does not lend itself to exact calculation, we use,
similar to FAIR, a Monte Carlo simulation to envision
thousands or millions of trials playing out. Those trials are
then plotted on a histogram to show the variance of likely
risk values, giving a risk analyst a picture of potential risk.

3.1. Harms

While most often associated with physical or mental
injury, the term ‘harm’ can also refer to moral injury or
wrongfulness [15]. It is this latter definition with which
we concern ourselves. The authors are partial to Daniel
Solove’s Taxonomy of Privacy harms as it provides a very
discrete and granular list of social norms. Readers are free
to substitute their own normative framework to identify
the harms to be avoided in their analysis. Other models
include, but are not limited to, Ryan Calo’s Objective
and Subjective Harms [16], Alan Westin’s four states
of privacy [17], Prosser’s privacy torts [18], Hartzog’s
obscurity, trust and autonomy [19], and Nissenbaum’s
contextual integrity [20]. Work has also been done on
systematically deriving synthetic consequences from com-
bined normative models [21].

Solove’s taxonomy breaks harms into sixteen discrete
harms under four categories, as shown in Table 1. In
Solove’s original formulation, he prefaced the Collection
category with Information similar the first two in the
table. We modified that because the underlying harms
are not about information or data collected but the act
of collecting. Asking an invasive question is a harm
regardless of whether the subject provides a response.
The act of watching or monitoring someone’s activities
is the harm regardless of whether data or information is,
in fact, collected. Even the appearance of surveillance (a
dummy camera), what Ryan Calo calls the “perception
of unwanted observation” [16], can result in measurable
behavioral changes in subjects.

4. Frequency Factors

Within FAIR-P, frequency is a function of four distinct
factors: opportunity, motivation, capability, and difficulty.

TABLE 1. SOLOVE TAXONOMY OF PRIVACY HARMS

INFORMATION
PROCESSING

INFORMATION
DISSEMINATION

COLLECTION INVASION

Aggregation
Identification

Insecurity
Secondary Use

Exclusion

Breach of Confidentiality
Increased Accessibility

Distortion
Disclosure
Exposure

Surveillance
Interrogation

Decisional Interference
Intrusion

We will discuss each of these in turn, then explain how
frequency is derived from them.

4.1. Opportunity

Definition: Random variable representing the number of
opportunities presented to a threat actor in a defined
time period (usually one year) to violate the privacy of
individuals within an at-risk population.

When conducting a privacy risk analysis, one must
consider what opportunity the threat actor community is
presented to impact the at-risk group’s privacy. Namely,
how frequently will threat actors interact with individuals
or interact with proxies for individuals?

For principal threat actors, like a company running
a website, determining opportunity becomes a rather
straightforward calculation. How many website visitors
(the “at-risk” individuals) visit the website in a year? Ide-
ally, one should aim to determine realistic numbers based
on empirical data, especially if one has access to website
logs. Whether one measures the number of opportunities
in terms of unique individuals or unique visits to the
website depends upon the nature of the privacy harm being
assessed. You can view privacy harms as discrete events or
as a continuous harm. Take intrusion, such as spamming,
for an example. One view would be where each email
a threat actor sends could be an intrusion, and thus the
threat actor’s opportunities are measured as fast as the
threat actor’s server will send or as fast as the recipient’s
client will download the spam. In this view, though, the
other factors must be adjusted appropriately (motivation
might be not to spam as fast as you can less the recipient
block your server). The continuous view would take it,
that a threat actor who obtains an email address has “an”
opportunity to spam. Whether that means 1 message, 100
message or 1,000,000 messages, by obtaining the email
address they now have “an” opportunity.

For indirect threat actors, such as vendors and partners
of the website, calculation of opportunity frequency rests
on how often they encounter new information about at-risk
individuals. For instance, assume a mortgage application
website submits the application to different brokers de-
pending on whether the applicant meets certain criteria
(location, size of loan). Brokers may only see a fraction
of the applications the website operator does.

Opportunity is sometimes described in risk literature
as the capacity of a threat actor. A mortgage website
has the capacity to threaten the privacy of applicants.
However, it does not have the capacity to threaten bus
passengers on a bus in Paris. There, the bus driver does.

Given an estimated number of opportunities presented
to the threat actors, we could use strictly that number
in our calculations. Owing to some uncertainty in the
estimate, a distribution around that number would be ap-
propriate. Because opportunity represents discrete events
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or actions in a given time frame, a discrete lower bounded
distribution is appropriate. Assuming the opportunities are
independent, a Poisson distribution makes sense because
we know the average number (or at least an estimate) and
the outcomes are binary (either the threat actor has an
opportunity or they do not) [22].

4.2. Motivation

Definition: Random variable representing the likelihood
a threat actor will seize an opportunity.

The next factor to consider is the motive of the threat
actors to commit a privacy harm. Motivations vary but we
can generalize as done in Table 2.

TABLE 2. THREAT ACTOR CATEGORIES AND COMMON MOTIVES

Persons Organizations Governments

Curiosity, spite,
money, control,

& revenge

Money, competitive
advantage, & social

change

Law enforcement,
espionage, social
control, service
improvement, &

repression

While the above suggests why threat actors might act
in a certain way, it does not quantify how motivated the
threat actors are. For this, one should consider sub-factors
such as threat actors’ reward in performing the activity
(e.g., making money) and the cost to do so. While financial
motivations may be easy to determine, not all threat
actors may be rational economic actors, so that should be
considered as well. In addition, the risks to threat actors,
like being arrested for illegal privacy violations, represents
an indirect cost to be considered and any perceived reward
discounted against.

Motivation is expressed as a percentage chance of
the threat actors taking advantage of opportunities. As
with all the calculations, this should be expressed as a
probability distribution based on defined scenarios, not
a precise numerical value. The probability represents the
uncertainty and variation in threat actors’ behaviors. A
Beta distribution, which works well for distributing per-
centages, could be used for simulating possible values
for motivation. The original FAIR proposed a beta-PERT
distribution for its “probability of action” factor, using
a confidence value to skew the distribution towards the
minimum, maximum or most likely. PERT distributions
are commonly used in risk management for handling the
uncertainty of estimates [23]. As with the other factors,
analysts are free to choose a distribution most suitable to
their situation, especially if empirical data is available on
threat actor motivations.

4.3. Capability

Definition: Random variable representing the strength of
the skills and resources available to complete an attempt.

Capability represents the skills and resources available
to threat actors to take advantage of an opportunity. While
an employee at a firm may be given access to a database,
if they do not have the technical know-how to extract the
data or the resources, such as computing power, to use it,
they lack the capability to commit the potentially privacy
violative act.

Capability is expressed as a percentage chance of the
threat actor succeeding when trying to take advantage
of an opportunity (absent any impediments – which are
introduced below). The probability represents the uncer-
tainty in the threat actor’s capability to succeed. Similar
to motivation measured as a percentage, a Beta-PERT
distribution, continuous over a bounded range between
0 and 1, can be used for simulating possible values for
capability.

4.4. Difficulty

Definition: Random variable representing the strength of
impediments thwarting an attempt

While one cannot normally affect the capability of a
threat actor, one can create impediments that make attacks
more difficult for threat actors and raise the threshold at
which less capable threat actors are excluded. Consider
two threat actors, an 8-year old child and a cryptanalyst
employed by a government. Both of them want to read the
text messages between the 8-year-old’s parents. The skills
and resources available to the cryptanalyst might be 1000
times greater than that of the 8-year-old child. We can put
the child’s most likely capability at 0.099% and the crypt-
analyst’s at 99.9%. A simple substitution cypher might
thwart the 8-year-old but not the cryptanalyst. Because
we cannot be certain with precision about the difficulty,
we again use a range defining the lower and upper bounds
and a most likely estimate for rating the difficulty. As with
the other factors, when estimating values reference to ob-
jective measures provides some confidence in the numbers
being used. In lieu of objective measures, techniques such
as calibrated estimates can provide reasonable levels of
confidence. (See [24].)

Note that difficulty is distinguished from the deterrent
effect of making something difficult. In other words, em-
ploying strong encryption may have an effect of making
it harder to succeed but also have an effect on motivation,
by driving the costs up.

4.5. Calculating Frequency

The frequency is derived from attempt frequency and
vulnerability. Attempt frequency is a function of opportu-
nity and motivation. In order to derive attempt frequency,
a Monte Carlo simulation is performed using both oppor-
tunity and motivation. For every simulated opportunity, a
value should be picked from the motivation distribution.
This value is compared against a random value, over
[0,1], representing a threshold with that opportunity to
determine if the simulated threat actor was sufficiently
motivated to make an attempt. The results represent the
distribution of attempts for one simulated trial. Empirical
data about attempt frequency could also be used be in
lieu of calculating attempts based on opportunity and
motivation. An analyst may have historical data about
threat actor behavior which could be used for this purpose.

Similar to deriving attempt frequency from underlying
factors, a Monte Carlo simulation is run against capability
and difficulty to determine vulnerability. The distribution
represents the uncertainty and variance of threat actors’
skills, resources and ultimately successes or failures. An
attempt is deemed successful if the random value chosen
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over the capability distribution of the threat actor exceeds
the random value chosen over the difficulty distribution
put in place. Vulnerability is defined as the success rate
of these simulated trials. Ideally one would want to cal-
culate a success or failure for each attempt to determine
the number of successful attempts (i.e. the frequency of
violations for the time period under review) for each
simulated trial. In lieu of that, one ccould calculate an
average vulnerability using a Monte Carlo simulation and
use that as the success rate in a binomial distribution on
attempts to determine frequency for each simulated time
period.

5. Severity and Tangible Consequences Risks

As indicated in Section 1, risk is an adverse conse-
quence associated with some indicator of severity and a
frequency of occurrence. Section 4 covered the frequency
of a particular threat manifesting. This section covers
the adverse consequences, both in terms of severity of
the privacy/moral harm and the secondary risks of more
tangible consequences.

5.1. Severity of Harm

Definition: Random variable representing the degree of
nonnormativity of the privacy violative act relative to
other acts constituting the same harm.

The severity of the harm represents possibly the hard-
est concept in privacy risk for many to grasp. Most
risk frameworks look to tangible harms or damages. We
specifically reject an exclusive focus on concrete (phys-
ical and mental) harms for two reasons. First, what we
aim to prevent are violations of individuals’ privacy,
not damages. If someone wiretaps your phone, that is
a violation of your privacy. It does not matter whether
you ever find out about it, or whether the wiretapper
uses information learned from the phone call. The act of
wiretapping violates social norms, violates expectations of
the confidentiality of communications and constitutes an
invasion of privacy regardless of whether any subsequent
physical or mental injuries befall you. Privacy risk should
capture the frequency and severity of this occurring.

Secondly, if the focus of privacy risk is on tangible
damages, controls that mitigate these injuries without
mitigating the underlying harms would be given credence.
If a threat actor places a hidden camera in your house
and we are focused on your embarrassment upon finding
the camera, the threat actor can make the camera smaller,
harder to find, or encrypt the transmission to reduce the
chance that you find out and are embarrassed. But those
controls have done nothing to reduce the frequency or
severity of the underlying violation. In fact, one could
argue that increasing the covertness of the surveillance
may have made the violation even more severe in society’s
eyes. By way of example, when it was discovered that the
US based retailer Target was inferring pregnancy through
in-store purchases, rather than fully disclose such actions
to shoppers or simply stop, they obfuscated baby related
merchandise in targeted mailers. This reduced the tangible
consequences of judgment or ostracism by others in the
household but did not alter the underlying “secondary use”
of data by Target [25].

The authors propose using the following factors, using
a simple mnemonic (ABC), to relatively rate the severity
of privacy harm. The factors mirror the Belmont ethical
principles which came out of a 1978 commission report
on ethical principles for protection of human subjects of
research [26].

• Awareness: How aware is the individual of the
activity? How aware is the individual of why the
activity is taking place?

• Benefit: How beneficial is the activity to the indi-
vidual?

• Consent: How consensual is the activity? (In
measuring consensuality, one must consider any
power imbalance between individual and threat ac-
tor even in the face of apparent technical consent.).

While the factors are objective, the determination of a
numerical range for a specific answer set for the factors
would be subjective. However, the hope would be that
the same person or organization rating different situations
would produce relatively consistent ratings, thus leading to
the ability to internally compare privacy risks of different
situations within acceptable tolerances and for prioritiza-
tion.

In considering the probabilistic range of severity, one
must also consider the variances in the at-risk populations.
Not everyone in the population will have the same aware-
ness, benefit to the same degree or consent at the same
level. This will be especially apparent if the at-risk popula-
tion contains vulnerable sub-populations, such as children.
However, severity should not incorporate the risks of
adverse consequences. While adverse consequence risk
does factor into privacy risk, it should not be doubly
incorporated by way of severity.

Why, when the authors criticized the arbitrary quan-
tification in many attempts at privacy risk calculation, do
we seem to be introducing it here? First, many of those
methods we criticize place both likelihood and impact on
an arbitrary scale. With the exception of the severity, all
of the other factors presented here have a much more
formalized basis and the numbers clearly relate to one
another. An opportunity of twice a year is twice as often
as an opportunity of once a year, whereas a likelihood of
“2” on some ordinal scale just means more likely than a
“1” but does not describe how much more likely, failing
to provide a meaningful sense of even relative likelihood.

Second, impact ordinal scales reflect the cultural
norms of the scales’ designers, not necessarily those of
the people being affected. The scales are also often tied
to data points, like types of data or number of individuals
affected, which are at once divorced from context and con-
flate multiple types of privacy harms into one calculation.
Health data is often rated a 10 on an ordinal scale, but a
doctor using a patient’s pregnancy to determine medical
care is worlds away from a retailer inferring it to market
to customers, and both of those pale in comparison to a
doctor inviting non-medical friends into a delivery room
to observe. Severity under FAIR-P is meant to consider
context of activities through the three proposed factors of
awareness, benefit and consent.

We are not suggesting that estimates of severity should
flow solely from the perceptions of the analyst. Using
surveys of potentially affected populations would be one
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way that severity could be captured to rank and compare
the degree to which activities violate social norms of
behavior.

5.2. Risks of Tangible Consequences

Definition: Product of random variables representing the
frequency and magnitude of tangible injuries to the af-
fected population or others.

Individuals. Beyond the amorality of violative acts, as
measured by severity, individuals may additionally suffer
tangible adverse consequences as a result of the under-
lying activity. The Future of Privacy Forum’s Harms of
Automated Decision-Making [27] is a useable source of
potential adverse consequences, it’s particular focus noth-
withstanding. They can include those affecting the individ-
ual’s psyche, such as embarrassment and anxiety, changes
in behavior, or more objective external harms, such as
financial losses, lost opportunities and lost liberties.

As with any risks, tangible consequences are measured
by frequency of occurrences and magnitude within the
at-risk population. Not all individuals will suffer embar-
rassment at having nude photos leaked online and not all
individuals will suffer the same degree of embarrassment,
for example.

Society. Beyond adverse consequences to individuals,
privacy harms can introduce broad societal consequences.
Privacy is intimately tied to freedom, social mobility,
democratic society and individualism. Constant chipping
away at individual privacy results in desensitization
which can negatively affect other aspects of a free
society.While it is beyond the scope of this paper to
address all societal harms associated with the erosion of
privacy, some aspects include:

Social Sorting – categorization of individuals based on
shared characteristics with subsequent homogenous treat-
ment where differential treatment is warranted.
Differential Access – inequitable treatment of individuals
based on distinguishing characteristics where equal treat-
ment is warranted.
Class Discrimination – reduced opportunity for social
mobility based on social sorting of groups.

5.3. Calculating Severity

In a similar fashion to frequency, as discussed in
section 4.5, the magnitude factors can be simulated using
the Monte Carlo method to model the impacts of random
events. For every simulated violation in the trial time
period under review, a random value in the distribution
of severities should be chosen. The risk for that trial is
a summation of simulated severity values for all of the
simulated violations – i.e. a product of violation frequency
and severity.

While the authors do not specify any particular quan-
tification for severity, we suggest two possible methods:

• Binary (0 or 1): zero represents a non-violation
and one indicates the action has exceeded the

threshold to be labeled a violation of privacy. Two
issues still need to be addressed. First, the question
of labeling something a violation illuminates the
tension between a subjective assessment by the
data subject and the objective assessment of soci-
ety. Second, regardless of the line drawn between
subjective and objective views of the activity, the
heterogeneity of the population will vary the val-
ues for each individual.

• Bounded range (0 to 1): similar to the binary
approach, with zero and one representing a non-
violation and full violation respectively. The con-
tinuum in-between represents a degree within a
single individual.

5.4. Calculating Tangible Consequences Risks

Similar to severity, for each violation in a trial under
the Monte Carlo simulation, a tangible consequence risk
should be calculated. First, a frequency of those conse-
quences should be calculated. Not every action will result
in adverse consequences (e.g. a spam message may be
caught by a filter and never require the recipient to delete
it). While a threat actor may send out thousands of emails
to their list, only a portion will be result in inconvenience.
That portion is the frequency of the tangible consequence
amongst the potential recipients. The magnitude of the
tangible consequences represents the variation of the re-
cipients in the amount of time they spend deleting the
messages. Table 3 shows a hypothetical calculation on the
inconvenience of spamming. The numbers are meant to be
illustrative of the methodology and not representative of
any real-world measurements.

TABLE 3. SHOWING 3 TRIALS IN A MONTE CARLO SIMULATION

AND HOW TO DERIVE THE RISK OF INCONVENIENCE FROM

SPAMMING

Factor Example Monte Carlo Simulated value
Trial 1

Trial 2 Trial 3 Trial...

Frequency of
activity

Spamming 103,029
(meaning threat actors sent
out 103,029 spam emails)

74,042 118,379 ...

Frequency of
Tangible Con-
sequence

Inconvenience 62,458
(meaning 62,458 of those
spam emails inconvenienced
the recipients)

51,244 93,456 ...

Magnitude of
Tangible Con-
sequence

How long
were they
inconvenienced?

For each of the 62,458 times
people were inconvenienced,
an amount of time is calcu-
lated that they were inconve-
nienced. Chart at right show a
Beta-PERT distribution of 0.1
to 5 seconds with most likely
of 0.9 seconds.

Risk of
Tangible
Consequence

How much in-
convenience for
the entire popula-
tion that was at-
risk?

41,356 seconds (meaning of
the hundred thousand spam
messages sent out, the recip-
ients will spend a combined
41,356 seconds dealing with
them)

37,004
seconds

82,297
seconds

...

Each type of adverse consequence risks would be
expressed separately from each other owing to the het-
erogeneity in the metrics (financial harm to individuals
measured in dollars, lost liberty measured in time, etc.).
An analyst could use empirical information to plot a
distribution of adverse consequences.

6. Qualitative versus Quantitative Analysis

Many qualitative risk models rate risks on a categorical
scale (most often low to moderate to high). But these
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kinds of models often suffer from the inability to prioritize
controls consistent with organizational risk appetite and
tolerance. (Exceptions to this include System-Theoretic
Process Analysis for Privacy (STPA-Priv) [2].) Many
risks will be lumped into the moderate category [13] and
some worthwhile controls may not reduce a risk out of
a moderate rating. Even a control that reduces a risk
from high to moderate does not tell the organization if
the associated expense is worthwhile. Additionally, the
authors are unaware of any qualitative risk model that
explicitly distinguishes between the norm-violative and
tangible injuries to individuals.

Quantitative risk analysis seeks to address these defi-
ciencies. If an organization’s risk can be measured in dol-
lars and a control that costs $1 million a year can reduce
annual risk by $10 million, then it is clearly worth the in-
vestment. This works well for FAIR applied to information
security risks. However, two problems still persist when
using a quantitative risk framework for privacy. As pre-
viously stated, privacy risks often constitute externalities.
There is clearly a financial disincentive to spend money
internally to principally benefit those outside the firm. To
do so requires conscious organizational motivation and
effort. Secondly, not all privacy risks are easily quantified
financially. And, if you do quantify embarrassment or lost
liberty (such as in years of incarceration), determining
risk tolerance for that may be problematic. While some
industries, such as transportation, have for years dealt with
quantification of injury and death, most companies have
not thought very deeply about the effects of their activities
in this manner.

Quantification of privacy risk may be methodological
overkill in many cases, though, so how does one leverage
this privacy risk analysis methodology without massive
amounts of calculations and estimations? One way is to
use the principal risk factors in this model in a binary
fashion, discounting negligible values.

• Opportunity – Does what you are doing create
an opportunity for a threat actor?

• Motivation – Is the threat actor at all motivated?
• Severity – Is there general consensus on the right-

fulness or wrongfulness of the behavior? (One
should escape organizational myopia and look out-
side for guidance on normative behavior.)

• Consequences – Is there the potential for adverse
consequences in the at-risk population or society?

One can then use these factors to drive, at a high
level, the need for controls to reduce risk. Where one
answers affirmatively to all the above necessitates the
most attention. Where there is opportunity and motive,
this requires the next most direct attention. Finally, where
only opportunity exists, the least attention may be paid.
In cases where factors exist but organizational inertia and
costs prevent action, quantitative calculations can then
be utilized to measure benefits of potential expenditures
in reducing risk. One could also use the presence of
certain factors as thresholds that indicate the need to
employ particular types of analysis. Different privacy risk
analysis techniques may be more or less appropriate for
any particular circumstance. It is helpful to have a toolbox
rather than a single tool.

7. Comparison

A team from KU Leuven recently proposed a privacy
risk methodology (Data-Subject Aware Privacy Risk) [28]
which, like FAIR and the proposed method here, breaks
privacy risk into frequency and magnitude factors. The
frequency factors across all three models are representa-
tive of the same concepts: frequency equates to oppor-
tunities acted on by a threat actor where the strength
of the threat actor can be defeated by countermeasures.
Table 4 compares FAIR-P, proposed here, against this
methodology as well as NIST’s Privacy Risk Assessment
Methodology [8] and CNIL’s Privacy Risk Methodology
[10]. The comparisons are in three areas: what the model
seeks to avoid, the measure of likelihood of the avoidable
event and the measure of the severity of the avoidable
event.

TABLE 4. COMPARIOSON OF FOUR PRIVACY RISKS ASSESSMENT

METHODS

FAIR-P Privacy Risk Assessment for
Data Subject Aware Threat
Modeling [28]

NIST-PRAM [8] CNIL’s Privacy Risks Method-
ology [10]

To
be

av
oi

de
d

Solove Taxonomy (or
other normative privacy
models)

• Information Pro-
cessing

• information Dis-
semination

• Collection
• Invasion

Not explicit but discussed
“hard privacy” of:

• Linkability
• Identifiability
• Detectability
• Disclosure of Infor-

mation

Problematic Data Actions:

• Appropriation
• Distortion
• Induced Disclosure
• Insecurity
• Re-identification
• Stigmatization
• Surveillance
• Unanticipated Rev-

elation
• Unwarranted

Restriction

Feared events:

• unavailability of legal
processes

• change in processing
• illegitimate access to

personal data
• unwanted change in

personal data
• disappearance of per-

sonal data

L
ik

el
ih

oo
d

Frequency based on:

• Opportunity
• Motivation of

threat actor
• Threat actor ca-

pability
• Difficultly of

impediments

Frequency based on:

• Contact frequency
• Probability of action
• Threat actor capa-

bility
• Strength of threat

actor or counter-
measures bypassed

• Retention period

Arbitrary 10-point ordinal
scale

4-point ordinal scale

1) Negligible
2) Limited
3) Significant
4) Maximum

Se
ve

ri
ty

Magnitude based on:

• Non-normativity
of activity

• Secondary Con-
sequences Risk

Magnitude based on

• # of data subjects
• # of records
• Data subject type
• Data type sensitivity

Cumulative arbitrary 10-
point ordinal scale based on
organizational impacts:

• Noncompliance
costs

• Direct business
costs

• Reputational costs
• Culture costs

4-point ordinal scale

1) Negligible
2) Limited
3) Significant
4) Maximum

A
dd

iti
on

al Uses Monte Carlo simula-
tions with Beta-PERT distri-
butions for all factors.

Prioritization based on two-
dimensional plot of likeli-
hood and severity.

Prioritization based on two-
dimensional plot of likelihood
and severity

While one minor difference between KU Leuven’s
model and FAIR-P resides in the former’s inclusion of
“Retention Period” as a factor influencing the likelihood
of an adverse event, it is not much of a distinction since
opportunity in FAIR-P subsumes contact frequency and
retention in information-centric threats. One difference
between the two models plays out in severity, in that the
KU Leuven model places the volume of harm into severity
whereas FAIR-P incorporates volume in frequency. Con-
sider the threat of “Disclosure of Information” which is
the most similar threat under the two models. The hack
of iPhone accounts in 2014 resulted in the exposure of
nude photos of at least 100 celebrities [29]. FAIR-P would
classify this as 100 opportunities to disclose whereas the
KU Leuven model would say 100 data subjects impacted
(alternatively you could consider it on a per picture basis
and suggest 400 opportunities or 100 data subjects with
several records per subject, respectively). Regardless, the
multiplicative nature of likelihood and severity in both
models would equate to a similar risk distribution. The
key distinctions between the two models therefore appears
to be the data-centricity of the KU Leuven model com-
pared with FAIR-P’s broader privacy approach and the
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KU Leuven model’s lack of explicit consideration of the
non-normativity of the activity. The latter seems problem-
atic because without such consideration, disclosure with
consent or for the benefit of a data subject would have
equivalent risk to disclosure without consent or benefit.

The approaches proposed by NIST and CNIL are
similar in that they both use ordinal scales. As previously
mentioned, this causes two problems. First, it ignores
the breadth and depth of risk variance and uncertainty
by consolidating risk into a single quantity or two value
coordinates. Secondly, ordinal ranking obscures interstitial
variance. An increase in likelihood from a value of 2 to
3 might represent a hundred-fold increase in likelihood
while 2 to 3 on the severity scale might represent a mere
doubling, but risk as a function of the products of these
numerical values would fail to show that.

8. Conclusion

The purpose of this paper has been threefold. First, it
provides a more formal foundation for assessing quanti-
tative privacy risk as a means of moving beyond less rig-
orous quantitative approaches. Second, it incorporates in
the assessment methodology the external nature of many
privacy harms imposed by organizations on individuals
and society. Finally, it injects the concept of normative
privacy behavior (and not just physical and mental injury)
into the equation. Hopefully, this model is useful.

Not addressed in this paper are characteristics and
determinations of organizational privacy risk tolerance and
appetite. There has been relatively little research in this
area. Clearly, more such research is needed to help guide
organizations and society in adopting appropriate levels
of privacy risk. Additional areas of research include pop-
ulation surveys similar to [30] with comparison scenarios
to establish relative degrees of nonnormative behavior.

The appendix to this paper showcases the application
of FAIR-P to an example use case of the risks of surveil-
lance by managers of smart locks on home occupants.
[31]
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Appendix A.
Example Case Study of Surveillance Risks
of Smart Locks
For this example, we will discuss how one might approach an-
alyzing the risk of surveillance of a smart lock installed on the
exterior of a home (house or apartment) under the FAIR-P model.
The at-risk population are the occupants, those occupying the
home who will be entering or leaving through the door secured
by the smart lock. Assume the “smart” in smart lock refers not
just to an electronic lock but something with network capability
and the ability to be programmed or managed from that network.
The threat actors are those that have administrative capabilities,
the “managers” of the lock. This does not imply they act in a
management capacity over the occupants, just over the lock. Notice
we are not talking about external hackers or someone who needs to
breach security to have access to the lock. The concern, expressed
by the manufacturer reviewing the privacy risks associated with
the smart lock, is that managers, who may also be occupants
themselves but could also be landlords or previous occupants, may
surveil the occupants, monitoring their comings and goings.
This appendix is not intended as a full throttled analysis of the
surveillance risks posed by smart locks, but meant to be illustrative
of the application of the risk assessment model. We asked Dr. Gilad
L. Rosner, Founder of the Internet of Things Privacy Forum, to role
play an executive at a hypothetical smart lock manufacturer.

A.1. Opportunity
We need three pieces of information to determine threat actor
opportunity: the number of threat actors (managers), the number
of at-risk individuals (occupants) and the relationship between the
two. According to Grand View Research, over 7 million smart locks
were sold in 2019. Quite a few of these are used in the hospitality
industry or other non-residential settings, though. Dr. Rosner ex-
plained that even the residential market is broken up into two very
different markets because of the differing technology needs: those
selling to single family residences and those selling to managers of
multi-family complexes (like apartments). His fictitious company
was focused on single family residences and expected to have
500,000 units in place worldwide in the coming year. According to
Pew Research the average number of household occupants (in the
US) in 2018 was 2.63 (the-number-of-people-in-the-average-u-s-
household-is-going-up-for-the-first-time-in-over-160-years/). 2016
numbers from the European Council put the number of household
occupants (in the EU) at 2.3. Not knowing the relative market
distribution for this company, we average the two numbers to 2.465.
However, we’re not concerned about people surveilling themselves,
so the number of non-manager occupants at risk would be 1.465.
You may be thinking that the managers have an opportunity to
surveil the occupants every day, or every time they enter or
leave the household. But, by being given administrative rights on
the smart lock they are afforded “an” opportunity. Whether they
observe the occupant once, once a month, once a day or every five
minutes, the observations collectively represent the surveillance.
The monitoring is the totality of the activity, not the discrete acts
of observance.

1 manager × 1.465 occupants × 500, 000 households
= 732, 500 opportunities

. https://www.grandviewresearch.com/industry-analysis/
smart-lock-market

. https://www.pewresearch.org/fact-tank/2019/10/01/

The 732,500 opportunities are only an estimate and thus
we will use that as the mean in a Poisson distribution to
represent uncertainty in our estimation and variability in
population throughout the year.

A.2. Motivation

A survey was conducted with 192 participants, approxi-
mately half in EU and half in the US. Participants were
asked a simple question of whether, if they were the
lock manager, they would monitor occupants. Participants
were asked in two different contexts: as a family member
monitoring other family members and apartment manager
monitoring tenants. Participants in the US were much more
likely to monitor occupants than in the EU, but in both
groups, more participants were likely to monitor family
members than tenants, though in the EU the number was
only marginally higher. A follow-up survey of 91 US based
persons asked about familial surveillance was very close (at
61.5%) to the original survey (at 62.4%).

TABLE 5. PARTICIPANTS INTERESTED IN MONITORING FAMILY

MEMBERS OR TENANTS

Would you monitor Participants Family Members Tenants
EU 100 38.0% 37.0%

US 92 62.4% 47.4%

Combined 192 49.7% 41.9%

Participants were given an option to comment. Some rele-
vant comments were “I would like to have access, but that
does not mean that I would use it all the time, but it can
be useful in some situations,” “If I were the owner of a
home and used this smart lock, I may find it useful to track
when a maid or some other paid service is accessing my
home/property,” and “Whether I would want to and whether
I actually would are different. I might want to but refrain
because of legal fears or ethical qualms. As an apartment
manager, it would be mainly for practical reasons (to send
maintenance workers in (with the tenant’s permission) when
the tenant is away, to avoid disruption).”
In quantifying motivation for analysis, we used the 38.0%,
49.7% (combined) and 62.4% in our Beta-PERT distribu-
tion for minimum, most likely and maximum, respectively.
See Figure 1. A more sophisticated undertaking might have
involved weighting the most likely value to the different
geographic markets based on distribution of sales in those
markets.

A.3. Attempt Frequency

The histogram in figure 2 illustrates the attempt frequency.
In a simulation of 2700 possible outcomes, attempts range
from a low of 285,315 per year to a high of 452,601. The
median was 364,439. Due to limitations in Excel at doing
sub-simulations, for each trial, opportunity and motivation
were used as inputs in a binomial distribution inversion
function as trials and success rate, respectively, to derive
the attempt frequency for that trial year.

A.4. Vulnerability

We assume, for our baseline risk analysis, that the ca-
pability of the managers always exceeds any negligible
impediments. This may be an over simplification, as the
capabilities of our manager population may include some
who lack the technological skills to adequately use the
management tool to surveil the population, despite the lack
of protective controls. But, for now, the vulnerability plays
no part in the calculation.
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Figure 1. Histogram of simulation counts over possible motivation
percentages

Figure 2. Histogram of attempt frequency

A.5. Frequency

Since vulnerability has no effect on an attempt (every
attempt will be successful), Frequency will be the same
as attempt frequency. As with attempt frequency, due to
limitations of conducting sub-simulations in Excel, one can
use attempts and the success rate (i.e. vulnerability) as trials
and probability of success in a binomial distribution inver-
sion function to determine successful violations for each
simulated trial. This was done for residual risk calculations
illustrated in the Risk section below.

A.6. Severity

First, we need to consider the severity of the harm, surveil-
lance. Survey participants were asked a threshold question
of whether they viewed monitoring in the two scenarios as
a “privacy violation.” The results are in Table 6
The threshold question purposefully did not intone any
awareness, benefit or consent of the occupant. Some par-
ticipants made potential assumptions about awareness: “I
assume that the installation of the smart lock is done with
full knowledge of its capabilities to the users.” Others
may have seen some countervailing benefit: “I feel like

TABLE 6. WHETHER PEOPLE VIEW SURVEILLANCE IN THE

SCENARIO AS A PRIVACY VIOLATION

Is this a privacy
violation?

Participants Family Members Tenants

EU 100 56.0% 78.0%

US 92 28.3% 90.2%

Combined 192 42.7% 83.8%

Figure 3. Plot of distribution of society’s view as whether monitoring a
family member constitutes a privacy violation

I answered yes for the apartment manager/tenant scenario
having lived in a dangerous apartment complex, I get why
you might want to monitor people coming and going. But
for family I feel like it goes too far,” and “It would help if
there was a crime and needed to know who was there.”
Another participant said “I think anyone out-side of a
family monitoring someone usage upon entering their home
would be a privacy issue. I can see where parents might
want to monitor their children’s exact time of coming and
leaving the home. But anything outside that scenario would
just be weird”

TABLE 7. TRIALS SHOWING WHICH PERCENT OF ACTIONS FOR

EACH TRIAL EXCEED THRESHOLD AND THE RESULTING RISK VALUES

INDICATING THE NUMBER OF PRIVACY VIOLATIONS IN A YEAR.

Trial Frequency Percentage of actions
exceeding threshold

Risk

1 326,410 38.90% 129,967
2 411,510 32.51% 133,798
3 353,869 46.89% 165,917
4 347,492 43.70% 151,837
5 378,232 50.82% 192,222
8 ... ... ...

Because we chose to use the binary method measuring
severity (i.e. of the activity rising to the threshold of a
violation), we used the family members range to in a Beta-
PERT distribution (Figure 3) to determine the percentage
of actions that would exceed society’s threshold. This is
illustrated in Table 7.
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A.7. Risk

We can calculate an annual risk curve at this point (us-
ing the Monte Carlo simulations to plot the distributions
of potential risk values), but isolated it does not provide
much value. If the risks were solely expressible as dollars,
the manufacturer could purchase insurance or take other
financial account of the risk. But we are talking about a
quantification of an externally imposed risk. What we can
do is compare this risk to other related values, namely
tolerance for risk, residual risk after controls are imposed or
similar privacy risks caused by the manufacturer (for use in
prioritization of mitigation efforts). The figures below show
the results of such comparisons.

Figure 4. Comparison of risk to tolerance. Corporate tolerance can
be determined through interviews and surveys with company managers
and executives to determine their ranges for acceptable risk. The graph
illustrates that risk is significantly higher than risk tolerance. Tolerance
was determined by the interview with Dr. Rosner role playing a corporate
executive from the company.

Figure 5. Comparison to residual risk after access restrictions to historical
logs has been put in place by the manufacturer and only granted in
certain circumstances (law enforcement request, etc.) and notification
on the locks to occupants about the logs. For illustration we set the
access restrictions at 95% effective strength. Note, while better it is still
not within tolerance.

Figure 6. Comparison to residual risk after logging was turned off by
default and only enabled by the manufacturer for a small set of customers
(1%). Now residual risk has been reduced to near tolerance levels.

Figure 7. Comparison of risk profiles for surveillance in the smart lock
product to another of the company’s products, a smart garage door,
illustrating the former has higher baseline risk and thus should take
priority in mitigation.
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