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Abstract— Interest in dense sensor networks due to falling
price and reduced size has motivated research in sensor location
in recent years. While many algorithms can be found in literature,
no benchmark exists and most papers fail to compare their results
to other competing algorithms. To our knowledge, the algorithm
which achieves the best performance in sensor location uses semi-
definite relaxation of a quadratic program to solve for sensor
location. We propose solving the same program, however without
relaxing the constraints, but rather transforming them into linear
triangle inequality constraints. Our linear program ensures a
tighter solution to the problem. We benchmark ours against the
competing algorithm, and provide extensive experimentation to
substantiate the robustness of our algorithm even in the presence
of high levels of noise.

I. INTRODUCTION

The falling price and reduced size of sensors in recent years
have fueled the deployability of dense networks to monitor and
relay environmental properties such as temperature, moisture,
and light [1]. The ability to self-organize and find their loca-
tions autonomously and with high accuracy proves particularly
useful in military and public safety operations. In dense
networks, multilateration can render good location accuracy
despite significant errors in range estimates between sensors.
This has launched a research area known as sensor location
which seeks to process potentially enormous quantities of data
collectively to achieve optimal results.

A recent paper on sensor location [2] provides an exhaustive
survey of the available techniques for sensor location. The
techniques achieving the best performance process the input
data in a centralized fashion; however in most, distributed ver-
sions are also available. Savvides et al. [3] solve a global non-
linear optimization problem through Kalman filtering which
yields good results but requires a high number of anchor nodes.
The multi-dimensional scaling technique employed by Shang
et al. [4] for sensor location achieves good results with few
anchor nodes, but requires high connectivity. Savarese [5] also
achieves good results by employing a two-phase initiation and
refinement approach, and as opposed to the aforementioned
papers deals with relatively high levels of noise.

To our knowledge, the two algorithms achieving the best
performance in sensor location formulate a program with
quadratic constraints to minimize a linear objective function

[2], [6]. Since some of the constraints are non-convex, the
papers differ primarily in their relaxation approaches to render
the problem convex. The solution provided by Biswas et al.
has greater applicability and yields better results than the one
by Doherty et al. Our paper follows their same approach,
maintaining the efficiency of convex optimization, however
by applying linear triangle inequality constraints as opposed
to quadratic ones, the problem is automatically convex. As a
result, a tighter solution is guaranted since no relaxation of
the constraints is needed.

The paper reads as follows. Section II states the gen-
eral problem adopted from Biswas [2] that we attempt to
solve for sensor location. Replacing the quadratic constraints
with triangle inequality constraints in the subsequent section
transforms the problem into a linear program. As the linear
program does not directly yield the sensor locations from
the solution, it necessitates reconstruction of the locations
as described in Sections IV and V. An extensive number
of challenging tests conditions are reported in Section VI to
substantiate the robustness of our algorithm to high levels of
noise in comparison to the algorithm proposed by Biswas.
The last section provides conclusions and directions for further
research.

II. PRELIMINARIES

Consider a network with two types of nodes: ��� anchor
nodes (or anchors) with known location and ��� sensor nodes
(or sensors) with unknown location, for a total of ����� �	� � �
nodes. For simplicity, let the nodes lie on a plane such that
node 
 has location �������� indexed through 
��	
 ����������� �
for the anchors and 
 ��� ��� ������� � for the sensors. The set!

contains all pairs of (anchor, sensor) nodes and (sensor,
sensor) nodes between which a link exists: "#
$�&%(')�	
+*,%-�+%/.� � �1020 �3��45�768020(*:9 , where 020<;=020 denotes the Euclidean distance
and the network parameter 9 is known as the radio range. The
complement set >! contains all pairs of nodes between which
no links exists: "?
��@%('A�	
�*B%-�+%/. �3� �C020 � � 4D� 6 020FEG9 �

Neighboring nodes 
 and % measure the link distance HI �J6
between them through received-signal-strength or time-of-
arrival techniques [7]. Given the locations of the anchor nodes
and the measured distances between neighboring nodes in



the network, the general problem considered by both Biswas
and Doherty to solve for the locations of the sensors ���K��
 �� �L� ������� � follows:

min MN �#O 6KP&QSR 0 T �U6 0
s.t. 020 �3�4D�768020 � I �U6-�WV�"?
��@%('+� !020 � � 4D� 6 020(E:9X� V�"?
��@%('+�Y>! (1)

where
I �J6 � HI �U6 � T �J6 . The problem minimizes the sum of

the absolute residuals T �U6 between the estimated distances
I �U6

and the measured distances HI �U6 .
The problem as stated above cannot be solved through

convex optimization techniques since some of the constraints
are non-convex. To overcome this obstacle, Doherty relaxes the
problem by removing all the non-convex constraints, reducing
it to a convex second-order cone optimization problem. This
however limits the estimated locations of the sensor nodes to
within the convex hull formed by the anchors. Biswas avoids
this limitation not by removing the non-convex contraints, but
rather by relaxing the problem to a semi-definite program.
The solution to the program yields an expected value and an
associated variance for the locations of the sensor nodes in the
network.

III. TRIANGLE INEQUALITY CONSTRAINTS

Rather than relaxing the constraints in (1), we propose
applying a different set of geometrical constraints while main-
taining the same objective functon. We exploit the triangular
structure of the network such that the link distances conform
to the triangle inequality constraints. The problem we solve
can be stated as follows:

min MN �#O 6KP&QSR 0 T �J6 0
s.t.I �U6 � I 6$ZXE I �2ZI �U6 � I �2Z E I 6$ZI 6$Z � I �<Z E I �U6

[ \
] �_^` a Vb"#
��@%('1� !Vb"2%-�$cd'1� !Vb"#
��$cd'+� ! (2)

where
I �J6 � HI �J6 � T �U6 . Rewriting the problem in standard

form removes the absolute values and introduces bounding
constraints:

min MN �#O 6KP&QSR T�e�U6 � T�f�J6
s.t.I �U6 � I 6$Z E I �<ZI �U6 � I �2Z E I 6$ZI 6$Z � I �2Z E I �U6

[ \
] � ^` a Vb"#
��@%('+� !Vb"2%-�$cd'1� !Vb"#
��$cd'+� !T e�J6 EGgh�iT f�U6 E:gd� V�"?
��@%('+� !

(3)

where
I �U6 � HI �J6 � T e�J6 4�T f�U6 . The solution to the problem

above does not directly yield the sensor locations as in (1), but
only the values of the residuals of the link distances. Hence
the complete algorithm requires an aposteriori reconstruction
stage described in the following section to furnish the locations
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Fig. 1. Location reconstruction

of the sensors from the residuals. Note that (3) can be applied
to the triangles formed in three-dimensional networks as well.
The reconstruction stage for such networks is not explained in
this paper for the sake of brevity.

The advantage of our approach lies in the linearity of
the constraints which ensures the convexity of the problem
without relaxing any of the original constraints. In addition, the
problem can be solved efficiently through linear programming
as opposed to quadratic or semi-definite programming. Note
that Whitehouse et al. [8] solve a similar problem to ours in
the context of sensor calibration.

IV. LOCATION RECONSTRUCTION

A. Location propagation

The reconstruction stage yields a unique solution for the
locations of the sensor nodes from the estimated distances
between neighboring nodes. The stage begins from any two
anchor nodes sharing a common neighboring sensor. Take
the network in Fig. 1A as an example. The locations of the
two anchors ��j and � � are known (and so the distance

I j �
between them) and the distances

I j k and
I � k to unknown �k

are furnished through the solution to (3). Given these four
data, [9] provides the set of equations necessary to compute�3k through the law of cosines. We say that the anchor nodes
propagate their locations to the unknown sensor node.

Now that �3k is known, triangle lmj � k becomes a known
triangle. A known triangle has the following two properties:

1) node property: all three of its nodes are known
2) link property: all three links exist between its three nodes

Such a triangle serves to propagate the locations of its nodes
to unknown sensor nodes connected to it in the exact same
manner as the anchors � and n propagated their known
locations to sensor o . The location of unknown sensor ��p
can be found from its connections to lqj � k : the four data
required are the now known locations � � and �3k (and so the
distance

I � k between them) and the distances
I � p and

I kKp to�rp . Alternatively, the location �p can be found still through
its connections to known triangle l j � k , but exploiting instead
the four data: � j , � k ,

I j p , and
I k�p . Once � p is found throughl � k�p (or alternatively l j�k�p ), in the same manner �s can be



found through � � , � p ,
I � s , and

I p s . Through propagation in
this manner, all the sensor nodes in the network can become
known.

B. The voting scheme

Given the four data � j , � � ,
I � k , and

I j�k , the set of equations
for the law of cosines actually furnishes two candidate loca-
tions �3k and t�3k mirrored about the line between ��j and � � .
The solution for t�3k appears in Fig. 1B. As shown, this solution
is inconsistent with the locations of the other nodes displayed
in the network since the distance between t�3k and �rp is greater
than the value

I kKp given through the linear program. The
voting scheme described in [10] collectively synthesizes the
estimated distances between the sensor nodes in the network
to uniquely determine their locations.

If the network contains only two anchor nodes as in Fig. 1,
two solutions exist mirrored about the line between the two
nodes. Here the mirror solution consistent with t� k also hast� p and t�3s mirrored about the line between � j and � � (i.e.
a mirror image of Fig. 1A). Therefore a network requires at
least three anchor nodes to yield a unique solution.

V. ARTIFICIAL LINKS

This section describes the three cases in which the normal
links between neighboring nodes considered thus far call for
supplemental non-existent links, or artificial links, to enable
location reconstruction of the sensor nodes for all network
topologies.

A.

Certain topologies of the network halt location propagation
to some sensor nodes. In order to isolate these nodes, the
network topology alone enables propagating location from all
pairs of anchor nodes before actually solving for the link
distances in (3). If not all sensor nodes can be found, artificial
links are necessary. Take Fig. 2A as an example (normal and
artificial links appear as dark and light lines respectively): the
locations of sensor nodes � j , � � , and � k are known through
other nodes in the network, but � p cannot be found since it has
no connections to a known triangle. If lqj � k were known, then�rp could be found through its connections to

I � p and
I k�p to� � and �3k respectively. Inserting the artificial link between � �

and �3k satisfies the link property of a known triangle renderingl�j � k known, and in turn �3p as well.
The artificial link between � � and � 6 generates a set of new

triangles in the network, and so introduces a corresponding
set of triangle inequality constraints in the linear program (3).
Each artificial link also generates an additional bounding con-
straint in the problem for the positive residual T e�J6 , stemming
from the given

I �U6 � HI �U6 � T e�J6 Eu9 . If we set HI �J6 � 9 , the
positive residual appears in the bounding contraints as T�e�J6 E:g ,
but not in the objective function since we have no real estimate

on its value, and so no motivation to minimize it. Since we do
not attempt to minimize Tbe�U6 , aritificial links are less restrained
than normal links.

B.

Another case necessitating artificial links is for nodes with
only one connection to the network, as shown in Fig. 2B. The
locations of sensor nodes � j through � p are known, but not
that of sensor v which connects to the network only through
sensor w . Since �3p is a node common to known triangle lqj kKp ,
inserting the artificial link between � s and a node of lmj�k�p
other than �rp , such as ��j , makes � s known through the four
data ��jx���rp-� I j s , and

I p s .
While the single artificial link between ��s and � j suffices

to make �s known, as mentioned previously since artificial
links are individually less restrained than normal links, adding
multiple artificial links guarantees a tighter solution to the
problem; hence we also add artificial links between � s and� � and between � s and �3k , since � � and �3k are also nodes
of known triangle l � kKp common to �3p .

C.

An anchor node in the network can be incorporated in the
linear program (3) by including the constraints associated with
all triangles between it, another anchor node, and a sensor node
neighboring both anchors, and setting the residual of the link
distance between the anchor pair to zero since this distance is
known.

In certain network layouts, an anchor node cannot be
included in the program because no sensor node neighbors
both it and another anchor node. Artificial links are necessary
in this case. Take Fig. 2C as an example. None of the sensors o ,w , or v neighbor both anchors � and n . In order to incorporate
in the program the known link distance

I j � between the two
anchor nodes, artificial link can be added between � � and� k such that l j � k appears in the constraints. Alternatively,
the artificial link between � j and �3s can be added such thatl j � s appears in the constraints. As in the case for singly-
connected sensor nodes, since artificial links are individually
less restrained than normal links, adding multiple artificial
links guarantees a tighter solution to the problem; hence the
artificial links between ��j and �rp , between �3k and � s , and
between � � and �rp are also added in the problem to include
intermediate triangles lmj kKp , lLk�p s , and l � p s between ��j and� � . We found that constraints for triangles such as lqj � p with
more than one artificial link in the problem are too loose to
improve the solution, and so only increase computation.

If a node is completely disconnected from the network we
have no information about it except that it lies beyond radio
range 9 from all other nodes in the network, hence there
is no deterministic manner to compute its location with any
meaningful accuracy.
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Fig. 2. Artificial Links

VI. EXPERIMENTAL SETUP AND RESULTS

In order to quantify the performance of our algorithm in
comparison to Biswas, we conduct experiments on a network
with the same structure. The network contains 50 sensor nodes
uniformly distributed throughout a one by one unit area. The
three varying parameters are the number of anchor nodes, the
radio range, and the noisy factor of the link distances. As
Biswas, the ground-truth link distances >I �J6 between neighbor-
ing nodes 
 and % are perturbed with zero-mean unit-variance
Gaussian noise y (0,1) and the varying parameter �3z 
 {}| . So
the algorithm accepts as input the noisy link distances HI �U6 �>I �U61~�" � � y�"#gh� � '3~ �3z 
�{}|�' .

Figure 3 illustrates an example network with three anchors,9 � g � n-v , and �3z 
 {�| � g ��� . The anchors and sensors appear
as dark and light asterisks respectively, and the normal and
artificial links as dark and light lines between neighboring
nodes. The network contains 211 normal links for an average
node connectivity of 7.9623, and 14 artificial links. Once
the linear program has been solved, the algorithm yields the
estimated locations of the sensors through the reconstruction
stage. The true and estimated locations appear in Figure 4 as
dark and light asterisks connected by an error line. The average
location error is 0.0597.

The computational complexity of the simplex algorithm
typically varies as ��"@��� z�� {������-
 � ��{�' [11]. The sparsity of
our constraint matrix allows for more efficient algorithms
than the simplex to solve our linear program, and so its
expected complexity should not exceed ��"@��� z�� {������-
 � ��{�' .
The upper bound for the number of constraints coincides with
a fully-connected network, where the number of triangles is�=� k�� , and each one introduces three constraints for a total�C� z�� {������8
 � ��{ � � N � f j P N � f � P� and complexity ��" � k ' . The
observed complexity for up to 9 � g � w-g is typically much
less. ���	�_�+�_� solved the linear program described above
with 1692 contraints using an interior-point algorithm in less
than one second on a 1GHz Pentium IV processor.

Biswas reports the results of a single trial network for the
six test conditions described in [2]. The quantative measure
for each test condition is the average location error over the
sensor nodes �� � ����� �-� e j 0�0 >�3�34,�3�$020�� (4)
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Fig. 3. Link distance estimation
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R=0.20 R=0.25 R=0.30noise
3 5 7 3 5 7 3 5 7

0.0
0.0427 0.0419 0.0408 0.0067 0.0058 0.0058 * � | f7� * � | f�� * � | f7�� � �7�7��� � � ������� � � ��  f�¡

0.1
0.0754 0.0644 0.0638 0.0526 0.0436 0.0270 0.0447 0.0362 0.0245� � �7�h¢��

0.2
0.0846 0.0801 0.0676 0.0764 0.0649 0.0493 0.0570 0.0566 0.0458

0.3
0.1063 0.0877 0.0873 0.0954 0.0825 0.0772 0.0767 0.0736 0.0459

TABLE I
NUMERICAL RESULTS FOR EXPERIMENTS

where >�3� and �� denote the ground-truth and estimated loca-
tions.

Our paper includes a more extensive superset of their test
conditions, spanning a much higher range of noise, for a total
of 38 tests. In addition, for each test we carry out ten trials of
randomly distributed sensor networks rather than one, equaling
380 trials. The result for each test condition is reported as
the average over the ten trials. Table I contains the results
for 36 tests as the cross product of ��� � ��£ z � �¥¤ oh�$vd��¦8§ ,9 �¨¤ g � nxgd�$g � nSvd�Kg � oSgd§ , and �3z 
 {�| �©¤ g � gh�Kg �2� �$g � nF�$g � oF§ .
The average connectivity of the networks for three anchors is
5.4372 for 9 � g � nSg , 7.7238 for 9 � g � nSv , and 10.2477 for9 � g � oSg . For each slot in the table, our results are reported
above, and if available, the corresponding results in [2] are
shown below in boldface in the same slot.

For perfect range measurements with three anchor nodes,
our algorithm performs only 12% better for 9 � g � nSv , but
furnishes an error nearly half the size as Biswas for 9 � g � nSg ,
and an error on the order of 100 times smaller for 9 � g � o-g .
For seven anchor nodes, 9 � g � o-g , and �3z 
�{}| � g �2� , the
error for Biswas is 161% greater than ours. In fact, in the
same column their error 0.0640 for �3z 
 {�| � g �2� is still 39%
greater than our error g � gSw8vSª for �3z 
�{}| � g � o ; this shows
that our algorithm is much more robust to noise. The fifth test
condition not appearing in the table included in [2] is for seven
anchors, 9 � g � o-g , and �3z 
 {}| � g � g-v , yielding error 0.0162
for the proposed algorithm and an error 0.05400 for Biswas,
hence 234% greater. The last competing test condition is for
seven anchors, 9 � g � w-g , and �3z 
 {}| � g ��� , yielding error
0.0114 for the proposed algorithm and an error 0.0500 for
Biswas, hence 338% greater.

VII. CONCLUSIONS AND FURTHER WORK

This paper describes a linear program to solve for location in
sensor networks. Drawing on previous approaches employing
complex optimization, our approach provides a tighter solution
to the problem than its competitors by applying triangle
inequality constraints. In order to substantiate its performance,

we run an extensive set of experiments in comparison with
the published results for the best competing algorithm. Our
algorithm outperforms the competing algorithm and proves
robust even in the presence of high levels of noise in the
measured link distances.

While the algorithm explained in this paper is centralized, it
can be easily rendered distributed along the same lines as the
competing algorithm. The implementation for the distributed
version is currently underway in order to efficiently process
networks with several thousands of nodes. In this paper, we
also touch on how our proposed algorithm applies to three-
dimensional networks as well.
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