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Abstract A smoothed particle hydrodynamics ap-
proach is utilized to model a non-Newtonian fluid with
a spatially varying viscosity. In the limit of constant
viscosity, this approach recovers an earlier model for
Newtonian fluids of Español and Revenga (Phys Rev E
67:026705, 2003). Results are compared with numerical
solutions of the general Navier–Strokes equation using
the “regularized” Bingham model of Papanastasiou
(J Rheol 31:385–404, 1987) that has a shear-rate-
dependent viscosity. As an application of this model,
the effect of having a non-Newtonian fluid matrix, with
a shear-rate-dependent viscosity in a moderately dense
suspension, is examined. Simulation results are then
compared with experiments on mono-size silica spheres
in a shear-thinning fluid and for sand in a calcium
carbonate paste. Excellent agreement is found between
simulation and experiment. These results indicate that
measurements of the shear viscosity of simple shear-
rate-dependent non-Newtonian fluids may be used in
simulation to predict the viscosity of concentrated sus-
pensions having the same matrix fluid.

N. S. Martys (B) · W. L. George
National Institute of Standards and Technology,
100 Bureau Drive, Stop 8615,
Gaithersburg, MD 20899-8615, USA
e-mail: nicos.martys@nist.gov

B.-W. Chun
Grace Construction Products,
Cambridge, MA 02140, USA

D. Lootens
SIKA Technology A.G.,
Tuffenwies 16, 8048 Zürich, Switzerland

Keywords Smoothed particle hydrodynamics ·
Suspension · Shear-thinning fluids ·
Non-Newtonian fluids

Introduction

The flow- and time-dependent properties of non-
Newtonian fluids are important in many biological,
environmental, and technological processes including
blood flow, food processing, and the placement of
concrete. In many cases, the non-Newtonian fluid of
interest is a suspension of rigid bodies immersed in
a matrix fluid. Such systems exhibit a wide variety of
phenomena such as shear thinning (Larson 1999), shear
thickening (Bender and Wagner 1996; Barnes 1989),
shear banding (Moller et al. 2006; Fielding and Olmsted
2004), dilatancy (Barnes 1989), and jamming (Lootens
et al. 2003). Most theoretical studies assume that the
matrix fluid of the suspension is Newtonian, where the
constitutive relation describes a linear stress evolution
as a function of shear rate with zero yield stress. Except
for the case of dilute (i.e., low-volume fraction) sus-
pensions, the inherent complexity of suspensions makes
it difficult to predict the rheological properties from
purely theoretical means. Instead, there is an effort to
develop computationally based models to help improve
our understanding of complex fluids. The detailed mod-
eling of suspension flow is challenging because the time
evolution of a rigid body’s motion entails keeping track
of a moving boundary at the fluid-solid interface. Still,
many advances have been made in understanding and
predicting the flow properties of suspensions where the
matrix fluid is Newtonian as an array of approaches
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have been developed including traditional computa-
tional fluid dynamics, Stokesian dynamics (Foss and
Brady 2000) and Lagrangian-based approaches like
dissipative particle dynamics (DPD) (Hoogerbrugge
and Koelman 1992; Boek et al. 1997; Martys 2005).
However, for many suspensions of interest, the matrix
fluid, for instance a cement paste (Flatt et al. 2004)
or polymeric-based material, is non-Newtonian. Often
such fluids can be described using Bingham, Herschel
Bulkley, or power-law models that have a shear-rate-
dependent stress or viscosity with a yield stress. The
computational modeling of such suspensions is greatly
complicated by the fact that local shear rates and hence
the viscosity can widely vary throughout the suspen-
sion. This feature is not accounted for in current com-
putational models of suspensions.

In this paper, a numerical model is presented for
modeling non-Newtonian fluids with application to
flow of a suspension with a non-Newtonian fluid matrix
using a smoothed particle hydrodynamics (SPH)-based
approach. This model builds on and, in some respects,
is a synthesis of results found in Monaghan (2005) and
Español and Revenga (2003). For this paper, the fluid
modeled may be described as having a viscosity that is
allowed to have a spatial dependence. That is, the vis-
cosity may, for example, depend on the local shear rate
or temperature which can, in turn, vary spatially. It is
shown that the model agrees well with direct numerical
solution of the general Navier–Strokes equation for an
idealized Bingham model of Papanastasiou, in the cases
of Couette and Poiseuille flow. As an application of
this model, the effect of having a non-Newtonian fluid
matrix, with a shear rate dependent viscosity in a mod-
erately dense suspension, is then examined. Simulation
results are compared with experimental data of mono-
sized silica particles in a shear-thinning fluid matrix. We
also consider the case of non-spherical particles where
simulation results are compared with experiments on
sand particles in a calcium carbonate paste. This paper
is organized as follows. Firstly, the numerical equa-
tions for the simulation are derived and the computa-
tional model is then described. The simulation model
is then validated for some simple flows like Couette
and Poiseuille flow using the “regularized” Bingham
model of Papanastasiou (1987) which has a shear-rate-
dependent viscosity. Using the same model fluid, a
sphere suspension is then simulated to understand the
consequences of having a non-Newtonian fluid matrix.
Next, comparison between experiment and simulations
are given for the cases of monosize spherical silica
particles in a shear-thinning fluid and finally for sand
in a calcium carbonate/water paste.

Numerical model

The model presented in this paper is based on the
SPH approach. SPH is a Lagrangian formulation of the
Navier–Stokes equations that was originally developed
by Gingold and Monaghan (1977) and Lucy (1977)
to study astrophysical problems. Recent advances in-
clude the inclusion of thermal fluctuations (Español
and Revenga 2003) in hydrodynamic flows and mod-
els describing viscoelastic fluids. While SPH has many
guises, the approach used in this paper largely relies on
the discretization of an integral representation of the
Navier–Stokes equations. The basic idea is to construct
an integral equation, composed of the fluid variables,
and a specified weight function having properties such
that when suitable dynamical variables are Taylor ex-
panded in the integral, key parts of the Navier–Stokes
equations are recovered. Once a satisfactory form of
integrand is determined, the integral is represented as
a discrete summation over a weighted set of points.
Each point corresponds to a SPH “particle” which
carries information related to local fluid properties
(e.g., density, velocity...). For example, consider the
Taylor expansion, about r of the following integral:

∫
dr′( f (r′) − f (r)

)(
r′ − r

)
F

(|r′ − r|)

≈
∫

dr′(r′ − r
) · ∇ f (r)(r′ − r)F

(|r′ − r|)

= ∇ f (r) + O(3). (1)

Here, f (r) could be a function that describes the fluid
and F(r) has the following property,

∫
drF(r)rr = 1.

Additional relationships and properties of F(r) are de-
scribed in the Appendix. This integral is an alternate
representation of the gradient of the function f (r) up to
O(3) in gradients. The next step is to approximate this
integral as a summation over neighboring points noting
that to each point, rq, there is associated a fluid prop-
erty, fq. Consider, first, a “smoothed” representation
of f (r), given as

f (r) =
∑

q

fqS
(|rq − r|) (2)

with

S
(
rq − r

) = W
(|rq − r|)∑

p W
(|rp − r|) . (3)
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Here, W(|rq − r|) is a weight function such that number
density of particles, dp, can be written as

dp =
∑

q

W
(|rq − rp|

)
, (4)

thus insuring that the representation of f (r) is properly
normalized. The fluid density, ρp, at point, rp, is then
given by ρp = mdp, where, m, is the mass. It can be
shown that the gradient of f at a point labeled p can
be written

∇ fp =∇ f (rp)= 1

dp

∑
q

(
fq − fp

)(
rq − rp

)
F

(|rq − rp|
)
,

(5)

where ∇W(r) = −rF(r). On inspection, it is clear that
Eq. 5 is consistent with Eq. 1.

Note, in this paper i and j will be reserved to in-
dicate components of vectors, whereas p and q will
correspond to actual SPH particles. Also, there is no
distinction between raised or lowered indices.

Using this approach, the time evolution of a fluid
may be represented as a set of particles, located at rp,
carrying local fluid properties, that undergo motion
in response to effective “interparticle” forces that are
defined by a descretized version of an integral represen-
tation of the Navier–Stokes equations. To achieve this,
consider the Lagrangian formulation of the continu-
ity equation and the general Navier–Stokes equations
(Landau and Lifshitz 1987):

∂ρ

∂t
= −ρ∇ · v, (6)

and

ρ
∂vi

∂t
= −∂ P

∂xi
+ ∂

∂xk

{
μ

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik∇ · v

)}

+ ∂

∂xi
(ζ∇ · v) . (7)

Here, ρ, is the fluid density, P is pressure, v is velocity,
μ and ζ are the shear and bulk viscosities, respectively.
In these equations, the bulk and shear viscosities cannot
be taken outside the gradient operator because they can
be spatially dependent. In the limit that the viscosity
is a constant (Eq. 7) reduces to the usual Navier–
Stokes equations. Note, the Lagrangian formulation
is preferred because this approach can give us more
flexibility in handling moving boundaries as shown in
a previous work for the case of a DPD-based model.

Given the result shown in Eq. 5, it is easy to see that
a discrete representation of the continuity equation is
Monaghan (2005):
(

∂ρ

∂t

)
p

= m
∑

q

F
(|rp − rq|

)(
rp − rq

) · (
vp − vq

)
. (8)

To construct an integral representation of the gen-
eral Navier–Stokes equation, a good starting point
(Zhu et al. 2010)1 is to consider the following integral
equation:2

Ai = 5
∫

dr′[μ(r′) + μ(r)
][

v j(r′) − v j(r)
]

×
[
(r′ − r)i(r′ − r) j

(r′ − r)2

]
F(|r′ − r|). (9)

Expanding μ(r′) and v j(r′) about r and taking advan-
tage of the properties of F(r) one obtains

Ai = ∇ · (
μ∂iv

) + ∇ · (
μ∇vi) + ∂i

(
μ∇ · v

)
. (10)

Incorporating this approximation into Eq. 7 the follow-
ing result is obtained

ρ
∂vi

∂t
= −∂ P

∂xi
+ Ai + ∂

∂xi

((
ζ − 5

3
μ

)
∇ · v

)

= −∂ P
∂xi

+ Ai + Bi (11)

with Bi = ∂
∂xi

(
(ζ − 5

3μ)∇ · v
)
. Hence to O(3) in gradi-

ents, the Taylor expansion of Eq. 9, alone, i.e., Bi = 0,
recovers the velocity gradient portion of the Navier–
Stokes equations with the assumption that ζ = 5

3μ. The
SPH representation of Ai is given by

Ai
p =5

∑
q

F
(|rp − rq|

)
ρq

×
[(

μp + μq
)(

rp−rq
)i(rp−rq

) · (vp−vq
)

(
rp−rq

)2

]
. (12)

1This earlier paper provides an alternate SPH-based construction
of the general Navier–Stokes equations by utilizing the repre-
sentation of gradients, as found in Eq. 1. As a result, obtaining
second order derivatives requires repeated application of Eq. 1.
The formulation of the general Navier–Stokes equations in the
current paper avoids the direct construction of many of the
second-order derivatives through the use of Eq. 9.
2Note, a similar integral form is used for the heat equation with a
spatially dependent thermal conductivity (Monaghan 2005) and
for the Navier–Stokes equations with constant viscosity (Español
and Revenga 2003).
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To incorporate the third term on the right of Eq. 11 so
that the ratio of shear to bulk viscosity is not fixed to 5

3 ,
one may use the derivative of a product property and
the following approximations. Taking a = ζ − 5

3μ then

Bi = ∂

∂xi
(a∇ · v) = (∂ia)∇ · v + a∂i∇ · v. (13)

Using standard SPH-based representations of deriva-
tives and gradients (Monaghan 2005) in Eq. 11, one
obtains:

(
Ba

i

)
p = (∂ia)p

= m
ρp

∑
q

F
(|rp − rq|

)(
rp − rq

)
i

(
ap − aq

)
, (14)

(
Bb

i

)
p = (∇ · v)p

= m
ρp

∑
q

F
(|rp − rq|

)(
rp − rq

) · (
vp − vq

)
, (15)

and from Español and Revenga (2003), we deduce

(
Bc

i

)
p = (

a∂i∇·v)
p = map

∑
q

F
(|rp−rq|

)
ρq

×
[
5

[(
rp−rq

)i(rp−rq
)·(vp−vq

)
(
rp−rq

)2

]
−(

vp−vq
)i

]
,

(16)

so that

Bi
p = (

Ba
i

)
p ∗ (

Bb
i

)
p + (

Bc
i

)
p . (17)

An alternative representation would be to determine
a∇ · v for each SPH particle and then apply the gradient
representation in Eq. 5. However, the Eq. 17 version
will be used for this work. Note that the term, ∇ · v, can
be directly obtained from evaluation of the continuity
equation so that no additional calculation is needed.

To account for the pressure gradient term, we follow
the previous work of Monaghan (2005):

(∇ P)p = −mρp

∑
q

(
Pp

ρ2
p

+ Pq

ρ2
q

)
F

(|rp − rq|
)(

rp − rq
)
.

(18)

A pressure term, commonly used to model incom-
pressible fluids, is given as P = c2(ρ − ρeq) where c is
related to the speed of sound and ρeq is an equilibrium
density.

When determining the local value of the viscosity it
will be first necessary to evaluate the local shear rate
tensor. A representation of the discretized shear rate is
given by:

(
γ̇ij

)
p =

∑
q

F
(|rp − rq|

)
ρq/m

(
rp − rq

)
i

(
vp − vq

)
j. (19)

The local magnitude of the shear rate is then

γ̇p =
√∑

ij

(
γ̇ij

)2
p

2
. (20)

Note that in the limit of constant viscosity, the mo-
mentum equations are the same as those derived by
Español and Revenga (2003), so this approach is a slight
generalization of theirs. In another work (Monaghan
2005), the Bi term is missing, which, again, is the same
as taking ζ = 5

3μ or a = 0. In this work, we will take the
bulk viscosity as zero, that is, we set a = − 5

3μ. Including
the bulk viscosity, as in previous models (Monaghan
2005), by effectively taking the parameter a = 0, can
introduce oscillations in the flow field which is not
studied this paper.

Model for rigid body inclusions

The model for colloidal particles largely follows that
used for DPD-based simulations in Hoogerbrugge and
Koelman (1992) and Martys (2005). As in the case
of the DPD-based models, a colloid is defined as an
assembly of constrained SPH particles so that they form
a rigid body. The rigid body motion is then deter-
mined by summing the forces due the neighboring SPH
particles and other auxillary forces (e.g., lubrication,
colloidal and body forces). As described previously in
Boek et al. (1997) and Martys (2005), when modeling a
dense suspension of hard spheres, DPD, or in this case
SPH, particle interactions are not sufficiently strong
enough to prevent overlaps of the colloidal spheres. To
model realistic flows between neighboring spheres in
very close proximity would require a very fine resolu-
tion, or a number density of particles that is too high
to make simulations tractable over reasonable times.
To avoid this problem, lubrication forces (Kim and
Karrila 1991; Martys 2005) are explicitly included in the
simulation to account for hydrodynamic interactions
between neighboring spheres. There are several forms
or “modes” of lubrication force interactions between
hard spheres. The most well known and important is
called the squeeze mode, that accounts for forces that
develop as two spheres directly approach each other.
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This force is proportional to the velocity difference
between the spheres and is inversely proportional to
the nearest surface-to-surface distance. For the case of
monosize spheres, the lubrication force, Flub, is equal
to 3

2πμa2
r (VA − VB)/sAB, where ar is the sphere ra-

dius, VA and VB are the velocities of spheres “A”
and “B”, and sAB is the nearest surface to surface
distance between spheres labeled A and B. There are
additional contributions to the squeeze mode as well as
other modes like the twist mode, which, as it sounds,
describes the effect of one sphere rotating relative to a
neighboring sphere. These additional contributions all
scale logarithmically and are largely dominated by the
squeeze mode.

For the case of hard spheres, all the modes of the
lubrication force, up to the first order, including terms
that scale as 1/sAB, ln sAB and sAB ln sAB, will be used in
simulations. When the colloidal particle is not spherical,
the lubrication force must be modified to account for
local curvature. In this case the lubrication force is
limited to the squeeze mode for this paper.

An additional modification of the lubrication force is
made by adjusting the viscosity of the lubrication force
term to account for the local shear rate between rigid
bodies near the sphere surface. This modification is
admittedly heuristic, however, as a first approximation
of shear-thinning effects of two rigid bodies in near
contact, may be considered reasonable. Further study
of this effect is needed.

Although lubrication forces will prevent overlaps
of spheres, it is well known that in the course of a
simulation such rigid bodies are not restricted from ex-
tremely close approaches. When the spheres are nearly
in contact, very refined time steps are needed such that
the simulation becomes too time consuming. To avoid
this problem, yet still account for the lubrication force
effects, a short range repulsive force, FAB ∼ C

s8
AB

, di-
rected radially between colloids A and B, was included
in the simulation. The functional form of repulsion is
akin to a DLVO approximation of a Lennard–Jones
hard sphere repulsion force (Israelachvili 1992).

All simulations will be carried out in the limit of
low Reynolds number. Re = ρLv/μ = ρa2

r γ̇ /μ << 1
where, a, is the sphere radius. As there are no thermal
fluctuations present in this simulation, the results will
correspond to the infinite Peclet number limit.

Numerical integration approach

A modified velocity Verlet time integration algorithm
is used for both the “fluid” particles and the rigid

body inclusions (Groot and Warren 1997; Martys 2005;
Martys and Mountain 1999). The basic algorithm is
given in the following equations for an incremental time
step δt:

x(δt) = x(0) + v(0)δt + δt2

2
a(0), (21)

v(δt) = v(0) + δt
2

[
a(0) + a(δt)

]
, (22)

where a(0) = f (x(0), ṽ(0))/m is the acceleration of the
SPH particle due to an effective force f described in
the next section and ṽ is taken to be (Groot and Warren
1997)

ṽ(δt) = v(0) + δt
2

a(0). (23)

The translation of the rigid body inclusion was also
updated using a similar modified velocity-Verlet ap-
proach while a quaternion based algorithm accounted
for the rotation of the object. Details of this algorithm
are beyond the scope of this paper and are given in
Martys and Mountain (1999). It should be mentioned
that this approach has been used in previous studies
of suspension flow based on the DPD method. The
SPH-based computational model described in this pa-
per is similar in structure to that of DPD so that it
was relatively easy to adapt the SPH model into the
DPD-based code.

Stress tensor

To evaluate the rheological properties of the composite
fluid (i.e., fluid matrix and rigid bodies combined),
it is convenient to construct a stress tensor based on
Kirkwood’s approach and similar to that used in mole-
cular dynamics and DPD (Hoogerbrugge and Koelman
1992; Martys 2005; Allen and Tildesley 1987). We first
rewrite:

m
(

∂vi

∂t

)
p

= m
ρp

[
−

(
∂ P
∂xi

)
p
+ (Ai)p + (Bi)p

]
, (24)

as

m
(

∂vi

∂t

)
p

=
∑
q �=p

f i
pq, (25)

where m is a mass that will be taken to equal 1 in
the simulation. We can think of each neighboring SPH
particle, labeled q, contributing a force fpq on SPH
particle, p, as all terms on the right side of Eq. 19 result
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from a summation over the neighboring particles. The
stress tensor for this model suspension has several con-
tributions. There are contributions from the propaga-
tion of momentum and inter-particle forces of the SPH
particles that are given by

σij = 1

Vtm

∑
q

p̃q
i p̃q

j + 1

2Vt

∑
p,q

f i
pq(rp − rq) j, (26)

where p̃q is the momentum of particle q relative to the
macroscopic velocity field and Vt is the total volume of
the system. There are corrections to the stress tensor
due to the constraint forces on the SPH particles that
make up the colloid. The constraint forces are deter-
mined by accounting for the rigid body motion in the
individual particles displacements and change in veloc-
ity at each time step of the velocity-Verlet algorithm.
Determination of the correction for constraint forces is
described in Martys and Mountain (1999).

In addition, there are contributions to the stress ten-
sor from the colloidal particle interactions. The stress
contribution from a central force between spherical
bodies is given by

σ c
ij = 1

2V

∑
A,B

Fi
AB(rA − rB) j, (27)

where A and B refer to two different colloids and FAB

is the force between colloids particles A and B de-
scribed above. Stress calculations from lubrication
forces are also included. The forms of these equations
are described in Kim and Karrila (1991). The viscosity
of the entire system is then obtained from evaluation of
the total stress tensor μ = σxy/γ̇ .

For the simulations in the study, the number density
of SPH particles ranged from 3 to approximately 4.6
(where length is defined in units of h, see Appendix).
For a simple Couette flow the lower value was adequate
to reproduce the correct viscosity as a function of shear
rate. To improve resolution for the spheres simulation,
the higher value of density was used.

For the case of simulating Couette flow, a Lees–
Edwards Allen and Tildesley (1987) boundary condi-
tion was utilized. This boundary condition is equivalent
to application of a constant rate of strain at the bound-
aries. Other boundary conditions will be described as
utilized.

Regularized Bingham fluid

A simple model non-Newtonian fluid of Papanastasiou
(1987) was used for preliminary testing of this model.

For this model the shear rate dependent viscosity is
given by

μp = μpl + μ0

M

[
1 − exp

(−Mγ̇p
)]

γ̇p
, (28)

where μpl is the viscosity in the limit of infinite shear
rate, usually called plastic viscosity, μ0 + μpl is the
viscosity in the limit of zero shear rate. The factor M,
can be thought of as a time scale where the suspen-
sion recovers its low shear rate behavior. Although
approximating a Bingham fluid, this model actually has
a zero yield stress. This model can be thought of as
a regularization of the Bingham model, which avoids
the singularity in viscosity in the limit of zero shear
rate. Unlike viscoelastic fluids, there is no inherent
memory effect in this fluid as the viscosity is known
immediately from the local shear rate. Such effects have
been considered elsewhere for model SPH fluids and
could be incorporated into this approach.

A dimensionless number called the Bingham num-
ber is given as Bn = μ0 L

MμplV
where L is the simulation

cell width and V is a characteristic velocity. For the case
of Couette flow V

L = γ̇ .

Results

Couette flow

As a first test of this simulation approach, the case of
Couette flow is studied for the model of Papanasta-
siou with a Bn = 0.1. Figure 1 shows early and latter
stage flow fields for this model fluid. Note, due to the
application of the Lees–Edwards boundary condition,
there is a higher shear rate near the region of the
initial application of the shear, thus causing the fluid to
temporarily have a lower viscosity there. On the other
hand, because the fluid is more viscous at low shear
rates, there is much less flow in the middle portion
of the simulation cell making the flow profile appear
flat there. However as time progresses the entire fluid
evolves to the same shear rate and a linear velocity
profile finally develops. The evaluation of the stress
tensor for this latter stage flow produces a viscosity
consistent with that given by the constitutive relation.
Similar results were obtained for other values of Bn.

Poiseuille flow

A second test was to study Poiseuille flow, where
a body force-driven flow between parallel plates is
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Fig. 1 Velocity profile, normalized to the maximum velocity
difference across the simulation cell, V/	Vmax, of width, L,
for Couette flow at early (f illed circles) and late stage (open
squares) flow. X is the distance from the zero velocity plane in the
simulation cell. Note for the early stage flow, near the application
of shear on the left and right hand sides of figure, the shear rate
is higher so that the viscosity is lower here. In the middle region,
at early stages, the velocity profile is more so horizontal as the
viscosity is higher here. At later stages of flow, the velocity profile
becomes linear

modeled. This requires the introduction of a no-slip
boundary condition at the fluid plate interface. To do
this, the following method described in Martys (2005)
is utilized. Here, the simulation cell is divided in half
and a body force is applied in one direction, in one half
of the simulation cell, and in the opposite direction in
the other half. Figure 2 shows the velocity profile in a
half cell for a set of Bn. Also shown is the numerical
solution of the general Navier–Stokes equation using
the same constitutive equation. Again agreement be-
tween simulation and numerical solution is reasonably
good. Note that there is a small variation on either side
of the velocity profile near the “walls”. This example
illustrates the sensitivity of the simulation to resolution
and is worth indicating. This artifact is a consequence
of not using a perfectly symmetric initial configuration
of points in the simulation cell. While slightly different
velocity profiles are obtained the agreement is still very
good with the independent numerical solution, thus
demonstrating the robustness of algorithm.

Suspension with an idealized Bingham fluid

Next, some general features of suspension flow for the
regularized Bingham model of Papanastasiou (1987)
will be discussed. Parameters for the Papanastasiou
model were chosen such that the viscosity limit for the

-0,5 -0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5
0,0

0,2

0,4

0,6

0,8

1,0

Bn=0.3

Bn=0.1

Bn=0

V
/V

m
ax

X/W

Bn=0.2

Fig. 2 Equilibrium Poiseuille flow fields for different Bn. The
open symbols represent results from SPH simulations. The solid
lines are numerical solutions of the generalized Navier–Stokes
equations. W is the width of the cell and X is the distance
from the center line of symmetry of the cell. The velocity, V, is
normalized to the maximum velocity of the case of Bn = 0. The
Bn = 0 case corresponds to the Newtonian fluid solution which
is parabolic. As Bn, increases the central portion of the velocity
profiles becomes flattened

low shear rate regime was about 100 times greater than
the high shear rate regime. For many cases this model
parameter choice would be a good approximation of
a Bingham fluid. Figure 3 shows the viscosity of the
fluid normalized to the infinite shear-rate value of the
viscosity. A set of monosize spheres, making a solid
volume fraction of 0.40, are added to the simulation
cell. Figure 3 also shows the relative viscosity of this
suspension. Again, the suspension viscosity is given
relative to the infinite shear rate value of the matrix
fluid. While the general trend is that the viscosity of the
suspension decreases with shear rate, there are three
regimes of interest for this study. Consider comparison
of the suspension viscosity with that of the matrix
fluid for the same shear rate. If the matrix fluid was
Newtonian, the suspension viscosity should be about a
factor of ten higher than that of the matrix fluid (Foss
and Brady 2000; Martys 2005). Note that at the very
low or very high shear rates studied, this limit is being
approached in the simulation. The reason is that, at the
highest shear rates, the relevant viscosity values sam-
pled through out the simulation cell correspond to the
high shear rate limit of the matrix fluid. Other regions
in the suspension do not contribute as significantly to
the overall stress in the system. A similar argument
can be made at the lowest shear rate regime where
the viscosity will not vary as much through out the
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Fig. 3 Comparison of matrix fluid viscosity (solid line) and rela-
tive viscosity of a suspension composed of monosize spheres with
volume fraction 0.40 (open squares). Values of viscosity, μ, for
both the matrix fluid and suspension are normalized to the plastic
viscosity μp of the matrix fluid. The matrix fluids properties
are based on the regularized Bingham model of Papanastasiou
(1987). Parameters for the model were chosen such that viscosity
increased by a factor of 100 as the shear rate decreases. The
open squares represent simulation data for the sphere suspension.
At the lowest and highest shear rates, the relative viscosity
approaches that of a similar sphere suspension in a Newtonian
fluid (approximately a factor of 10 higher than the matrix fluid).
At the intermediate shear rates shown, the relative viscosity of
the suspension is only about a factor of 2 to 3 higher than the
corresponding matrix fluid viscosity

suspension. An interesting shear rate regime is away
from where the viscosity plateaus. Here, the suspension
viscosity is only about a factor of two to three higher
than the matrix viscosity at each shear rate. In this case,
it is found that, as the suspension is sheared, the local
shear rate between spheres is much higher than that of
the bulk or global shear rate. As a result, the viscosity
between the spheres takes on the high shear rate limit
so that the overall viscosity is lower than that expected
for the relative viscosity.

Comparison with experimental measurements
of suspensions with spherical silica particles

Now, comparison is made between simulation and
actual experiments on idealized sphere suspensions,
Firstly, a shear- thinning fluid was prepared using a
solution of 5% by volume Methylhydroxypropylcellu-
lose in water. This fluid has some similarity with the
regularized Bingham fluid with a viscosity plateau at
low shear rates. However, for the data obtained, there
was no indication of a plateau at the highest shear rates
tested. Experimental data were obtained with an Anton
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Fig. 4 Comparison of experimental measurements (solid lines)
of viscosity, μ (Pa-s) as a function of the shear rate γ̇ , (1/s) for
a shear-thinning fluid and suspensions composed of silica sphere
at the designated volume fractions φ with simulation data. The
dashed line represents a fit to the experimental measurement of
the matrix fluid. The open symbols represent simulation data.
Based on sample preparation, experimental results varied less
10% from that shown in the figure

Paar rheometer3 either with a cone/plate (50 μm gap)
or with a plate/plate (1 mm gap) geometry of 25 mm
diameter. Rheological measurements were then made
on systems composed of the same matrix fluid but
with silica particles added for a set of volume fractions
ranging from 0.19 to 0.49. The silica particles are type
P0060-Beads with diameter ranging between 100 to
140 μm. Figure 4 shows the viscosity as a function
of shear rate of the matrix fluid and the suspension
made by adding the silica spheres to the matrix fluid.
Tests were performed to check for the influence of
sedimentation and migration on the measured viscosity.
We expected that effects due to sedimentation would
be small due to the relatively high viscosity of the
matrix fluid. As a check, measurements were made at
a fixed shear rate for two minutes and did not show
a significant change in viscosity Repeating the mea-
surements with the same sample gave similar results.
We also found there was no hysteresis of the viscosity
as a function of shear rate when increasing and then
decreasing the shear rate. This indicated there was no

3Certain commercial equipment, instruments, or materials are
identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended to
imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply that
the materials or equipment identified are necessarily the best
available for the purpose.
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significant sedimentation or migration of the particles
over the time scales of the measurement.

The viscosity versus shear rate for the experimental
matrix fluid was then fit to a function that was used to
define a constitutive law for the fluid. This function was
used in the simulation code to define the local viscosity
for a given shear rate. Figure 4 shows that the correct
viscosity is self consistently recovered by simulation.
Next spheres were added to the simulation cell at vol-
ume fractions close to that of the experiment. As can be
seen in Fig. 4, the simulation results follow the experi-
mental trends closely. Note, at the lowest shear rates,
the viscosity of the sphere suspensions, for different
volume fraction, are consistent with that of that of a sus-
pension with a Newtonian fluid (Foss and Brady 2000)
as the viscosity being sampled is approaching its plateau
value. On the other hand, as the shear rates increases,
the viscosity of the higher volume fraction suspensions
had a tendency to decrease at lower values of shear rate
than the lower volume fraction systems. This is a result,
for the higher volume fraction suspension, of the typical
spacing between spheres being smaller—hence, larger
relative shear rates are present between spheres that
result in lower localized viscosities.

Comparison with experimental measurements
of a model mortar suspension

A second fluid system was considered that is represen-
tative of many suspensions (i.e., cement based materi-
als). Here the matrix fluid was calcium carbonate/water
slurry with a sand (F-95 (US silica)) added to make a
mortar like suspension. Of course the calcium carbon-
ate slurry is also a suspension but the constituent parti-
cle sizes are much smaller (less than 10 μm) than that of
sand so that it can be thought of as a continuum fluid.
The mean sand size was about 0.2 mm in diameter and
ranged about a factor of 5 about the mean. A Bohlin
CVO coaxial cylinder rheometer with a gap of about
2.5 mm was used to measure the suspension viscosity.
In contrast to the previous data, the matrix fluid did
not show a plateau in viscosity at lowest shear rates
tested, but, did begin to indicate a viscosity plateau
at the higher shear rates. As in the previous case the
simulation reproduced the correct constitutive relation
for the matrix fluid. A model for the sand particles was
used in the simulation that was based on reconstructed
tomographic images (Garboczi et al. 2001) of a similar
sand (Fig. 5). The tomographic images were analyzed
so that the local surface properties (surface normals,
principle curvature) of the particles could be incorpo-
rated into the simulation in order to better estimate

Fig. 5 Visualization of aggregates used in simulation of a suspen-
sion composed of sand embedded in a calcium carbonate paste.
The volume fraction φ = 0.50. The sand shapes are based on
X-ray microtomography images of a related sand (Garboczi et al.
2001)

lubrication forces. For the two volume fractions studied
(0.40 and 0.50) there was good agreement (Fig. 6) be-
tween simulation and experiment, especially given that
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Fig. 6 Comparison of simulation (open symbols) results to exper-
imental measurements (solid lines) of relative viscosity, vs shear
rate γ̇ , (1/s) for a suspension composed of sand embedded in
a calcium carbonate paste. The matrix fluid (bottom solid line)
and an approximate fit (dashed line) to the data are also shown.
Data for volume fractions φ = 0.40 and 0.50 are shown. Based on
sample preparation, experimental results could vary about 10%
from that shown in the figure
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the model inclusions were not necessarily identical to
the sand particles. Note the higher values obtained for
the simulation for the 0.50 volume fraction could in part
be attributable to a sensitivity of particle shape vari-
ation in the simulation. Clearly more study is needed
here but the results are encouraging.

Conclusion

In conclusion, a set of numerical equations for mod-
eling suspensions with a non-Newtonian fluid matrix
has been presented. In a series of tests of this model,
very good agreement was found between simulation
and independent numerical solutions, and, with a set
of experiments performed on two different suspen-
sions. This work demonstrates that one may measure
the rheological properties of a fluid and then use this
measurement as input into a simulation code to deter-
mine the properties of a suspension having the same
matrix fluid. Extending this model to other fluid types
(e.g., viscoelastic, temperature dependent viscosity...)
is straight forward. Further research is needed to bet-
ter understand how to properly modify lubrication
forces to account for the presence of a non-Newtonian
fluid matrix. In addition, correct modeling of thermal
fluctuation effects to account for low Peclet number
flow would also be desirable as this is not currently
understood for the case of a non-Newtonian fluid.
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Appendix

Proper construction of the weight function W(r) is im-
portant for the physically correct transmission of matter
or forces between neighboring SPH particles. Here
some key properties of W(r) and its derivative are given
for convenience. The weight function and alternate

formulations are discussed more fully in Español and
Revenga (2003), Monaghan (2005).
∫

drW(r) = 1. (29)

∇W(r) = −rF(r) (30)

In this work, the SPH Lucy function is utilized for a
weight function.

W(r) = 105

16πh3

(
1 + 3

r
h

) (
1 − r

h

)3
(31)

and

F(r) =
(

315

4πh5

)(
1 − r

h

)2
. (32)

For for the remainder of this paper, we set h = 1. Some
of the more important properties of F(r) are given
below.
∫

drF(r)rr = 1. (33)

∫
drF(r)

xxxx
r2

= 3

5
. (34)

∫
drF(r)

xxyy
r2

= 1

5
. (35)
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