An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Amy Mensch, Anthony Hamins, Wai Cheong Tam, John Lu, Kathryn Markell, Christina You, Matthew Kupferschmid
According to a recent NFPA report, 49 % of reported home fires involve cooking equipment, with cooktops accounting for 87 % of cooking-fire deaths and 80 % of the civilian injuries [1, 2]. Between 2014–2018, U.S. fire departments responded to an estimated
Jun Wang, Andy Tam, Youwei Jia, Richard Peacock, Paul A. Reneke, Eugene Yujun Fu, Thomas Cleary
Research was conducted to examine the use of Support Vector Regression (SVR) to build a model to forecast the potential occurrence of flashover in a single-floor, multi-room compartment fire. Synthetic temperature data for heat detectors in different rooms
Haiqing Guo, Marcos Vanella, Richard Lyon, Randall J. McDermott, Sean Crowley, Paul Scrofani
Hidden fire in an aircraft overhead inaccessible-area is hazardous to in-flight safety and could lead to catastrophic disaster. In this case, fire detection at the earliest stage requires an improved understanding of the heat and mass transfer in overhead
Amy Mensch, Anthony Hamins, Andy Tam, John Lu, Kathryn Markell, Christina You, Matthew Kupferschmid
Cooking equipment is involved in nearly half of home fires in the United States, with cooktop fires the leading cause of deaths and injuries in cooking-related fires. In this study, we evaluate 16 electrochemical, optical, temperature and humidity sensors
Andy Tam, Eugene Yujun Fu, Richard Peacock, Paul A. Reneke, Jun Wang, Grace Ngai, Hong Va Leong, Thomas Cleary
Fire fighter fatalities and injuries in the U.S. remain too high and fire fighting too hazardous. Until now, fire fighters rely only on their experience to avoid life-threatening fire events, such as flashover. In this paper, we describe the development of
Jun Wang, Andy Tam, Paul A. Reneke, Richard Peacock, Thomas Cleary, Eugene Yujun Fu, Grace Ngai, Hong Va Leong
This paper presents a study to examine the potential use of machine learning algorithms to build a model to forecast the likelihood of flashover occurrence for a single-floor multi-room compartment. Synthetic temperature data for heat detectors from
Jun Wang, Youwei Jia, Eugene Yujun Fu, Jiajia Li, Andy Tam
This paper aims to facilitate the use of machine learning to carry out supervised classification/regression tasks for time series data in fire research. Specifically, a feature engineering tool, FAST (Feature extrAction and Selection for Time-series), is
Wai Cheong Tam, Eugene Yujun Fu, Richard D. Peacock, Paul A. Reneke, Jun Wang, Jiajia Li, Thomas G. Cleary
This paper presents a learning-by-synthesis approach to facilitate the utilization of a machine learning paradigm to enhance situational awareness for fire fighting in buildings. An automated Fire Data Generator (FD-Gen) is developed. The overview of FD
The Fire Research Division at the National Institute of Standards and Technology is investigating the ability to forecast backdraft or smoke explosions during a fire event using a phi meter. Compared to other gas sensors, a phi meter can measure the global
Wai Cheong Tam, Eugene Yujun Fu, Amy E. Mensch, Anthony P. Hamins, Christina Yu, Grace Ngai, Hong va Leong
This paper presents a study to examine the potential use of machine learning models to build a real-time detection algorithm for prevention of kitchen cooktop fires. Sixteen sets of time- dependent sensor signals were obtained from 60 normal/ignition
Wai Cheong Tam, Eugene Yujun Fu, Amy E. Mensch, Anthony P. Hamins, Christina Yu, Grace Ngai, Hong va Leong
This paper presents a study to examine the potential use of machine learning models to build a real-time detection algorithm for prevention of unattended cooking fires. 16 sets of time- dependent sensor signals were obtained from 60 normal/ignition cooking
This paper presents a learning-by-synthesis approach to facilitate the utilization of machine learning paradigm to enhance situational awareness for fire-fighting in buildings. An automated Fire Data Generator (FD-Gen) is developed. The overview of FD-Gen
Amy E. Mensch, Anthony P. Hamins, John Lu, Wai Cheong Tam
Cooking equipment is involved in nearly half of home fires in the USA, with cooktop fires the leading cause of deaths and injuries in cooking-related fires [1]. While new electric-coil cooktops must pass the UL 858 [2] abnormal cooking test, which aims