An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Chris Oates, Nathan R. Newbury, Laura Sinclair, Leo Hollberg, Andrei Derevianko, Marianna Safronova, Nan Yu, Kurt Gibble
Recent advances in optical atomic clocks and optical time transfer have enabled new possibilities in precision metrology for both tests of fundamental physics and timing applications. Space offers both the potential to vary significantly the gravitational
Andrei Derevianko, Kurt Gibble, Leo Hollberg, Nathan R. Newbury, Chris Oates, Laura Sinclair, Nan Yu
Recent advances in optical atomic clocks and optical time transfer have enabled new possibilities in precision metrology for both tests of fundamental physics and timing applications. Here we describe a space mission concept that would place a state-of-the
Hans Pieter Mumm, Tomi Akindele, Nathaniel Bowden, Rachel Carr, Andrew Conant, Milind Diwan, Anna Erickson, Michael Foxe, Bethany Goldblum, Patrick Huber, Igor Jovanovic, Jonathan Link, Bryce Littlejohn, Jason Newby
For decades, physicists have used neutrinos from nuclear reactors to advance basic science. These pursuits have inspired many ideas for application of neutrino detectors in nuclear energy and security. While developments in neutrino detectors are now
Evan Jahrman, Jamie Weaver, Niranjan Govind, Marko Perestjuk, Gerald Seidler
There is considerable need for robust, accessible, and non-destructive Fe redox analysis methods for silicate-based minerals and glasses. A popular method assigns the distribution of Fe2+ and Fe3+ atoms using pre-edge features in the Fe K-edge X-ray
We present a study of noncritical phasematching behavior in thin-film, periodically poled lithium niobate (PPLN) waveguides. Noncritical phasematching refers to designing waveguides so that the phasematching is insensitive to variations in waveguide
The Precision Reactor Oscillation and Spectrum Experiment, PROSPECT, is designed to both perform a reactor-model independent search for eV-scale sterile neutrino oscillations at meter-long baselines and to make a precise measurement of the antineutrino
Superconducting electronic circuits have much to o er with regard to neuromorphic hardware. Superconducting quantum interference devices (SQUIDs) can serve as an active element to perform the thresholding operation of a neuron's soma. However, a SQUID has
Sai Meghasena Chavali, John Roller, Mario Dagenais, Behrang Hamadani
External luminescence quantum yields of subcells within several multijunction solar cells were measured using a calibrated hyperspectral imaging system in electroluminescence mode. The measurements allowed direct comparison of subcell device parameters
K. Wurtz, B.M. Brubaker, Y. Jiang, Elizabeth Ruddy, Dan Palken, Konrad Lehnert
In cavity-based axion dark matter detectors, quantum noise remains a primary barrier to achieving the scan rate necessary for a comprehensive search of the axion parameter space. Here we introduce a method of scan rate enhancement in which an axion
James Ashton, Stephen Moxim, Ashton Purcell, Patrick Lenahan, Jason Ryan
We present a model based on Fitzgerald-Grove surface recombination for the bipolar amplification effect (BAE) measurement, which is widely utilized in electrically detected magnetic resonance (EDMR) to measure reliability and performance-limiting interface