An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Oliver Burrow, Robert Fasano, Michael Wright, Wesley Brand, Wenbo Li, Andrew Ludlow, Erling Riis, Paul Griffin, Aidan Arnold
Grating magneto-optical traps are an enabling quantum technology for portable metrological devices with ultracold atoms. However, beam diffraction efficiency and angle are affected by wavelength, creating a single-optic design challenge for laser cooling
The Kerr effect in atomic vapor may be regarded as the power saturation of the susceptibility. Hence the saturable Kerr effect is intimately tied to the standard Kerr effect. Here, we calculate the saturable Kerr effect without parameters using a two-level
Luca Argenti, Juan Martin Randazzo, carlos maranthe, Jeppe Olsen, Siddhartha Chattopadhyay, Barry I. Schneider
We describe ASTRA (AttoSecond TRAnsitions), a new close-coupling approach to molecular ionization that uses many-body transition density matrices between ionic states with arbitrary spin and symmetry, in combination with hybrid integrals between Gaussian
Benedikt Hampel, Richard Mirin, Sae Woo Nam, Varun Verma
Superconducting Nanowire Single-Photon Detectors (SNSPDs) are excellent devices for the analysis of faint light from the ultraviolet to the mid-infrared. Recent developments push their broad wavelength bandwidth further into the mid-infrared towards 20 μm
Frequency engineering of whispering-gallery resonances is essential in microcavity nonlinear optics. The key is to control the frequencies of the cavity modes involved in the underlying nonlinear optical process to satisfy its energy conservation criterion
Bakhrom Oripov, Dana Rampini, Jason Allmaras, Matt Shaw, Sae Woo Nam, Boris Korzh, Adam McCaughan
For the past 50 years, superconducting detectors have offered exceptional sensitivity and speed for detecting faint electromagnetic signals in a wide range of applications. These detectors operate at very low temperatures and generate a minimum of excess
Daniel Barker, Peter Elgee, Ananya Sitaram, Eric Norrgard, Nikolai Klimov, Gretchen K. Campbell, Stephen Eckel
We study the forces and optical pumping within grating magneto-optical traps (MOTs) operating on transitions with non-trivial level structure. In contrast to the standard six-beam MOT configuration, rate equation modelling predicts that the asymmetric
Molecules have vibrational, rotational, spin-orbit and hyperfine degrees of freedom or quantum states, each of which responds in a unique fashion to external electromagnetic radiation. The control over superpositions of these quantum states is key to
We experimentally and theoretically investigate the anisotropic speed of sound of an atomic superfluid (SF) Bose-Einstein condensate in a 1D optical lattice. Because the speed of sound derives from the superfluid density, implying that this density is
Over the past 20 years optical frequency combs, with atomic clocks, have been a powerful and enabling technology in the context of time and frequency measurement. Impressively, optical atomic clocks have yielded an 8 order of magnitude improvement in
John Kitching, Matthew Hummon, William McGehee, Ying-Ju Wang, Susan Schima
We describe work toward the development of next-generation chip-scale atomic clocks, which combine small size, low power consumption and manufacturability with high frequency stability. The use of optical transitions in microfabricated vapor cells improves
Veruska Malave, Kavita Jeerage, Edward Garboczi, Tara Lovestead
Human studies provide valuable information on components or analytes recovered from exhaled breath, but there are limitations due to inter-individual and intra-individual variation. Future development and implementation of breath tests based on aerosol
Superconducting nanowire single photon detectors (SNSPDs) have low dark counts, improved gain stability, and high resolution compared to traditional infrared detectors. Recent work at NIST and NASA has incorporated SNSPDs into arrays and extended the
Previous studies of the protein kinase, ERK2, using NMR and hydrogen-exchange measurements have shown changes in dynamics accompanying its activation by phosphorylation. However, knowledge about the conformational motions involved is incomplete. Here, we
David Deisenroth, Sergey Mekhontsev, Wenda Tan, Wenkang Huang
This study investigated the correlation between the keyhole geometry and reflected laser light distribution during laser-based manufacturing processes. An "imaging dome" system was developed to capture the distribution of the reflected laser light on a
Thinh Bui, Mark-Alexander Henn, Weston L. Tew, Megan Catterton, Solomon I. Woods
Advances in instrumentation and tracer materials are still required to enable sensitive and accurate 3D temperature monitoring by magnetic particle imaging. We have developed a magnetic particle imaging instrument to observe temperature variations using
David Long, Jasper Stroud, Benjamin Reschovsky, Yiliang Bao, Feng Zhou, Thomas W. LeBrun, David Plusquellic, Jason Gorman, Sean Bresler
Cavity optomechanical sensors offer exceptional sensitivity but interrogating the cavity motion with high accuracy and dynamic range has proven to be challenging. Here we employ a dual optical frequency comb spectrometer to readout a cavity optomechanical
Dipanjan Saha, Dacen Waters, Ching-Chen Yeh, Swapnil Mhatre, Ngoc Thanh Mai Tran, Heather Hill, Kenji Watanabe, Takashi Taniguchi, Matthew Yankowitz, David B. Newell, Albert Rigosi