An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
S Norimoto, P See, N Schoinas, I Rungger, Tommy Boykin, Michael Stewart, J. P. Griffiths, C. Chen, D. A. Ritchie, M. Kataoka
Increasing electric current from a single-electron source is a main challenge in an effort to establish the standard of the ampere defined by the fixed value of the elementary charge e and operation frequency f . While the current scales with f , due to an
William Borders, Advait Madhavan, Matthew Daniels, Vasileia Georgiou, Martin Lueker-Boden, Tiffany Santos, Patrick Braganca, Mark Stiles, Jabez J. McClelland, Brian Hoskins
The increasing scale of neural networks needed to support more complex applications has led to an increasing requirement for area- and energy-efficient hardware. One route to meeting the budget for these applications is to circumvent the von Neumann
Albert Davydov, Yaw S. Obeng, Ndubuisi George Orji, Umberto Celano, Daniel Schmidt, Carlos Beitia
The international roadmap of devices and systems (IRDS) projects that 2D materials will be inserted into high-volume manufacturing as channel materials, mostly for low-power applications within the next ten years. While their broader introduction in the
Olga Ridzel, Wataru Yamane, Ishiaka Mansaray, John S. Villarrubia
We are beginning projects to validate the physics models used for interpretation of electron microscopy images. In one, we will measure electron yields and energy spectra from cleaned well-characterized samples subjected to electron bombardment inside of a
Robert F. Berg, Charles S. Tarrio, Thomas B. Lucatorto
We present measurements and a model of aluminum oxidation induced by ultraviolet (UV) radiation. Spots of oxide were grown by focusing synchrotron radiation onto a polycrystalline aluminum membrane in the presence of water vapor at pressures from 3×10-8
Spencer Reisbick, Myung-Geun Han, Chuhang Liu, yubin zhao, Eric Montgomery, Vikrant Gokhale, Jason J. Gorman, Chunguang Jing, June W. Lau, Yimei Zhu
The development of ultrafast electron microscopy (UEM), specifically stroboscopic imaging, has brought the study of structural dynamics to a new level by overcoming the spatial limitations of ultrafast spectroscopy and the temporal restrictions of
Jacob Taylor, Daniel Carney, Hartmut Haffner, David Moore
Electrons and ions trapped with electromagnetic fields have long served as important high- precision metrological instruments, and more recently have also been proposed as a platform for quantum information processing. Here we point out that these systems
Emily A. Townsend, Tom?a?s Neuman, Alex Debrecht, Javier Aizpurua, Garnett W. Bryant
The exact study of small systems can guide us toward relevant measures for extracting information about many-body physics as we move to larger and more complex systems capable of quantum information processing or quantum analog simulation. We use exact
Trends in the zeroth frequency moment of the imaginary part of the dielectric function are studied for a wide range of metals, semiconductors and insulators. These results are combined with estimates for the inverse-first moment (related by Kramers-Kronig
Eric L. Shirley, Joseph Woicik, Cherno Jaye, Daniel A. Fischer, Abdul K. Rumaiz, Joshua J. Kas, John J. Rehr, Conan Weiland
Complete ab initio real-time cumulant and Bethe-Salpeter-equation calculations accurately capture the detailed satellite structure observed in both the photoemission and x-ray absorption spectra of the transition-metal compounds SrTiO3 and TiO2. Real-space