An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Temitayo Adeyeye, Sidra Gibeault, Daniel Lathrop, Matthew Daniels, Mark Stiles, Jabez McClelland, William Borders, Jason Ryan, Philippe Talatchian, Ursula Ebels, Advait Madhavan
Though exponential distributions are ubiquitous in statistical physics and related computational models, sampling them from device behavior is rarely done. The superparamagnetic tunnel junction (SMTJ), a key device in probabilistic computing, shows
Quantitative MRI has been an active area of research for decades and has produced a huge range of approaches with enormous potential for patient benefit. In many cases, however, there are challenges with reproducibility which has hampered clinical
Klaus Natorf Quelhas, Mark-Alexander Henn, Ricardo Cordeiro de Farias, Weston L. Tew, Solomon I. Woods
Magnetic Particle Imaging (MPI) is a novel technique developed for remotely detecting magnetic nanoparticle (MNP) tracers, with great potential for biomedical imaging (as an alternative to traditional methods like MRI or CT), cell tracking, targeted drug
Relaxor-ferroelectrics display exceptional dielectric properties resulting from the underlying random dipolar fields induced by strong chemical inhomogeneity. An unusual structural aspect of relaxors is a skin-effect where the near-surface region in single
Liam Pocher, Temitayo Adeyeye, Sidra Gibeault, Philippe Talatchian, Ursula Ebels, Daniel Lathrop, Jabez J. McClelland, Mark Stiles, Advait Madhavan, Matthew Daniels
Superparamagnetic tunnel junctions are important devices for a range of emerging technologies, but most existing compact models capture only their mean switching rates. Capturing qualitatively accurate analog dynamics of these devices will be important as
Willie Beeson, Dinesh Bista, Huairuo Zhang, Sergiy Krylyuk, Albert Davydov, Gen Yin, Kai Liu
The vast high entropy alloy (HEA) composition space is promising for discovery of new material phases with unique properties. We explore the potential to achieve high magnetic anisotropy materials in single-phase HEA thin films. Thin films of FeCoNiMnCu
Klaus Natorf Quelhas, Mark-Alexander Henn, Ricardo Farias, Weston L. Tew, Solomon I. Woods
Image reconstruction is a fundamental step in Magnetic Particle Imaging (MPI). Since it was developed, several methods have been studied to perform more efficient and accurate reconstructions. One of the challenges of MPI is the fact that the
William Borders, Advait Madhavan, Matthew Daniels, Vasileia Georgiou, Martin Lueker-Boden, Tiffany Santos, Patrick Braganca, Mark Stiles, Jabez J. McClelland, Brian Hoskins
The increasing scale of neural networks needed to support more complex applications has led to an increasing requirement for area- and energy-efficient hardware. One route to meeting the budget for these applications is to circumvent the von Neumann
Samuel Oberdick, Stephen Dodd, Alan Koretsky, Gary Zabow
A promising form of magnetic resonance imaging (MRI) contrast, known as multispectral or "color" contrast, encodes protons with discrete frequencies (i.e., colors) using micro-engineered control of magnetic fields. Manipulation of local magnetic fields is
Matthew Daniels, William Borders, Nitin Prasad, Advait Madhavan, Sidra Gibeault, Temitayo Adeyeye, Liam Pocher, Lei Wan, Michael Tran, Jordan Katine, Daniel Lathrop, Brian Hoskins, Tiffany Santos, Patrick Braganca, Mark Stiles, Jabez J. McClelland
Due to their interesting physical properties, myriad operational regimes, small size, and industrial fabrication maturity, magnetic tunnel junctions are uniquely suited for unlocking novel computing schemes for in-hardware neuromorphic computing. In this
Thinh Bui, Mark-Alexander Henn, Weston L. Tew, Megan Catterton, Solomon I. Woods
Advances in instrumentation and tracer materials are still required to enable sensitive and accurate 3D temperature monitoring by magnetic particle imaging. We have developed a magnetic particle imaging instrument to observe temperature variations using
Stephen E. Russek, Katy Keenan, Karl Stupic, Nikki Rentz, Michael Boss, Kevin J. Coakley, Amanda Koepke, Cassandra Stoffer
This document describes a calibration service to measure the water diffusion coefficient, or diffusivity, in reference materials and tissue mimics using nuclear magnetic resonance (NMR) techniques. This calibration is restricted to materials which exhibit
Klaus Natorf Quelhas, Mark-Alexander Henn, Ricardo Farias, Weston L. Tew, Solomon I. Woods
This work shows that it is possible to obtain faster MPI image reconstructions by implementing the algorithms in parallel in Graphics Processing Units (GPUs) using NVIDIA's CUDA (Compute Unified Device Architecture). While the parallel Kaczmarz's algorithm
Nanna Hagstrom, Rahul Jangid, F. N. U. Meera, Diego Turenne, Jeffrey Brock, Erik Lamb, Boyan Stoychev, Justine Schlappa, Natalia Gerasimova, Benjamin Van Kuiken, Rafael Gort, Laurent Mercadier, Loic Le Guyader, Andrey Samartsev, Andreas Scherz, Giuseppe Mercurio, Hermann Durr, Alexander Reid, Monika Arora, Hans Nembach, Justin Shaw, Emmanuelle Jal, Eric Fullerton, Mark Keller, Roopali Kukreja, Stefano Bonetti, Thomas J. Silva, Ezio Iacocca
Symmetry is a powerful concept in physics, but its applicability to far-from-equilibrium states is still being understood. Recent attention has focused on how far-from-equilibrium states lead to spontaneous symmetry breaking. Conversely, ultrafast optical
This book chapter describes the processes leading to nonlinear excitations in ferrites at high power levels. We start from equation of motion that include nonlinear terms leading to nonlinear processes. First and second order Suhl instabilities for