An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Grant Brodnik, Haixin Liu, David Carlson, Jennifer Black, Scott Papp
Many uses of lasers place the highest importance on access to specific wavelength bands. For example, mobilizing optical-atomic clocks for a leap in sensing requires compact lasers at frequencies spread across the visible and near infrared. Integrated
Despite the ubiquity of molecular alignment in natural and synthesized materials, accurate mapping of three-dimensional (3D) molecular orientations with sufficient spatial resolving power has remained challenging. Conventional analysis approaches of
Cory Nunn, Daniel Jones, Todd Pittman, Brian Kirby
Recent work by Mičuda et al. [Phys. Rev. Lett 109, 180503 (2012)] suggests that pairing noiseless amplification with noiseless attenuation can conditionally suppress loss terms in the direct transmission of quantum states. Here we extend this work to
Paul Szypryt, Douglas Bennett, Ian Fogarty Florang, Joseph Fowler, Jiansong Gao, Andrea Giachero, Ruslan Hummatov, Adriana Lita, John Mates, Sae Woo Nam, Daniel Swetz, Joel Ullom, Michael Vissers, Jordan Wheeler
Single-photon detectors based on the superconducting transition-edge sensor are used in a number of visible to near-infrared applications, particularly for photon-number-resolving measurements in quantum information science. To be practical for large-scale
We synthesized and studied color centers on silicon-on-insulator wafers with photoluminescence mapping and spectroscopy, and fabricated silicon W- and G- color center LEDs towards electrically-pumped single photon sources.
Jabir Marakkarakath Vadakkepurayil, Daehyun Ahn, FNU Nur Fajar Rizqi Annafianto, Ivan Burenkov, Abdella Battou, Sergey Polyakov
Maintaining stable phases in interferometric systems and optical links is pivotal for the functionality of diverse quantum communication protocols. However, conventional phase stabilization methods use classical optical signals that may corrupt quantum
Xiyuan Lu, Lin Chang, Minh Tran, Tin Komljenovic, John Bowers, Kartik Srinivasan
Applications in timekeeping, quantum sensing and quantum computing have sparked growing demand for high-performance photonic integrated circuit (PIC) lasers at visible and short near-infrared wavelengths between 400 nm and 1,000 nm. This Review summarizes
We present an \it ab initio} method for computing vibro-polariton and phonon-polariton spectra of molecules and solids coupled to the photon modes of optical cavities. We demonstrate that if interactions of cavity photon modes with both nuclear and
Advances in THz methods and applications require the detection of weak THz pulsed signals. One solution to this problem is to amplify weak signals using optically biased electro-optical (EO) techniques. Several different EO amplification schemes are
The nonlinear response of materials, an increasingly important aspect of light-matter interaction, can be challenging to measure in highly absorbing materials. Here, we introduce an interferometric technique that enables a direct measurement of the nonline
Noah Schlossberger, Samuel Berweger, Nikunjkumar Prajapati, Andrew Rotunno, Alexandra Artusio-Glimpse, Matthew Simons, Abrar Sheikh, Eric Norrgard, Stephen Eckel, Christopher Holloway
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields. Over the
Jizhao Zang, Haixin Liu, Travis Briles, Scott Papp
Soliton microcombs provide a chip-based, octave-spanning source for self-referencing and optical metrology. We use a silicon nitride integrated photonics foundry to manufacture 280 single-chip solutions of octave-spanning microcombs on a wafer. By group
Susan Schima, Franklyn Quinlan, Yifan Liu, Charles McLemore, Takuma Nakamura, Nazanin Hoghooghi, Scott Diddams, Peter Rakich, Dahyeon Lee, Naijun Jin, Megan Kelleher, Haotian Cheng
We demonstrate a vacuum-gap ultrastable optical reference cavity that does not require a vacuum enclosure. Our simple method of optical contact bonding in a vacuum environment allows for cavity operation in air while maintaining vacuum between the cavity
When an optical beam passes through a thin slice of a homogeneous material, the change of its phase and amplitude is characterized by its linear and nonlinear susceptibility, the latter also known as the hyperpolarizability. The standard method for
Benedikt Hampel, Daniel Slichter, Dietrich Leibfried, Richard Mirin, Varun Verma
State readout of trapped-ion qubits is usually achieved by observing qubit-state-dependent fluorescence from the ion while driving an optical cycling transition with laser light. The integration of photon detectors for fluorescence detection into the ion
Charles McLemore, Naijun Jin, Megan Kelleher, Yizhi Luo, Dahyeon Lee, Yifan Liu, Takuma Nakamura, David Mason, Peter Rakich, Scott Diddams, Franklyn Quinlan
Vacuum-gap Fabry-Perot cavities are indispensable tools for vastly improving the frequency stability of lasers, with applications across a diverse range of scientific and industrial pursuits. However, making these cavity-based laser stabilization systems
In many physical systems, the interaction with an open environment leads to energy dissipation and reduced coherence, making it challenging to control these systems effectively. In the context of wave phenomena, such lossy interactions can be specifically
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Andrew Rotunno, Aly Artusio-Glimpse, Abrar Sheikh, Eric Norrgard, Christopher L. Holloway, Stephen Eckel
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Aly Artusio-Glimpse, Matt Simons, Abrar Sheikh, Andrew Rotunno, Eric Norrgard, Stephen Eckel, Christopher L. Holloway
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields
Gregory Moille, Miriam Leonhardt, David Paligora, Nicolas Englebert, Francois Leo, Julien Fatome, Kartik Srinivasan, Miro Erkintalo
The discovery that externally-driven nonlinear optical resonators can sustain ultrashort pulses cor- responding to coherent optical frequency combs has enabled landmark advances in applications from telecommunications to sensing. The research focus has
Kyunghun Han, David Long, Sean Bresler, Junyeob Song, Yiliang Bao, Benjamin Reschovsky, Kartik Srinivasan, Jason J. Gorman, Vladimir Aksyuk, Thomas W. LeBrun
Sensing platforms based upon photonic integrated circuits have shown considerable promise; however, they require corresponding advancements in integrated optical readout technologies. Here, we present an on-chip spectrometer that leverages an integrated
Aly Artusio-Glimpse, David Long, Sean Bresler, Nik Prajapati, Dangka Shylla, Andrew Rotunno, Matt Simons, Samuel Berweger, Noah Schlossberger, Thomas W. LeBrun, Christopher L. Holloway
We show that the use of a probe optical frequency comb leads to dramatically improved bandwidth (as high as 12+/-1 MHz) for the detection of modulated radio frequencies in Rydberg atom-based electrometry.