An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Maic is a resource that enables quantum computation and quantifies the efficacy of a quantum state for universal fault-tolerant quantum computing. Understanding the mechanisms by which magic is created or destroyed is, therefore, a crucial step towards
Galen O'Neil, Daniel Swetz, Joel Ullom, Daniel Schmidt, Joel Weber, John Mates, William Doriese, Mark Keller, Michael Vissers, Kelsey Morgan, Robinjeet Singh
We present a method of creating high density superconducting flexible wiring on flexible thin silicon substrates. The flexible wiring, called SOI flex, is created by depositing superconducting wiring on a silicon on insulator (SOI) wafer, selectively
Grace Sommers, Sarang Gopalakrishnan, Michael Gullans, David Huse
In chaotic quantum systems, the entanglement of a region A can be described in terms of the surface tension of a spacetime membrane pinned to the boundary of A. Here, we interpret the tension of this "entanglement membrane" in terms of the rate at which
ChunJun Cao, Michael Gullans, Brad Lackey, Zitao Wang
We provide the first tensor network method for computing quantum weight enumerator polynomials in the most general form. As a corollary, if a quantum code has a known tensor network construction of its encoding map, our method produces an algorithm that
Travis Scholten, Carl Williams, Dustin Moody, Michele Mosca, William Hurley, William J. Zeng, Matthias Troyer, Jay Gambetta
Quantum computing is an emerging technology with potentially far-reaching implications for national prosperity and security. Understanding the timeframes over which economic benefits and national security risks may manifest themselves is vital for ensuring
A central challenge in the verification of quantum computers is benchmarking their performance as a whole and demonstrating their computational capabilities. In this work, we find a model of quantum computation, Bell sampling, that can be used for both of
Anouar Rahmouni, Paulina Kuo, Ya-Shian Li-Baboud, Ivan Burenkov, Yicheng Shi, Jabir Marakkarakath Vadakkepurayil, Nijil Lal Cheriya Koyyottummal, Dileep Reddy, Mheni Merzouki, Lijun Ma, Abdella Battou, Sergey Polyakov, Oliver T. Slattery, Thomas Gerrits
The development of prototype metropolitan-scale quantum networks is underway and entails transmitting quantum information via single photons through deployed optical fibers spanning several tens of kilometers. Among the major challenges in metropolitan
In quantum position verification, a prover certifies her location by performing a quantum computation and returning the results (at the speed of light) to a set of trusted verifiers. One of the very first protocols for quantum position verification was
We present an exact solution for the array modes of fluxonium. This solution holds for arrays of any length and ground capacitance. Array mode energies are determined by convex combinations of Chebyshev polynomials and their spatial profiles are plane
Benedikt Hampel, Daniel Slichter, Dietrich Leibfried, Richard Mirin, Varun Verma
State readout of trapped-ion qubits is usually achieved by observing qubit-state-dependent fluorescence from the ion while driving an optical cycling transition with laser light. The integration of photon detectors for fluorescence detection into the ion
Anouar Rahmouni, Lijun Ma, Ruixuan Wang, Jingwei Li, Xiao Tang, Thomas Gerrits, Qing Li, Oliver T. Slattery
Entanglement plays a vital role in quantum information processing. Owing to its unique material properties, silicon carbide recently emerged as a promising candidate for the scalable implementation of advanced quantum information processing capabilities
Maicol Ochoa, Keyi Liu, Michal Zielinski, Garnett W. Bryant
We characterize the single-electron energies and the wavefunction structure of arrays with two, three, and four phosphorus atoms in silicon by implementing atomistic tight-binding calculations and analyzing wavefunction overlaps to identify the single
Consider the problem of minimizing the entropy of a mixture of states by choosing each state subject to constraints. If the spectrum of each state is fixed, we expect that in order to reduce the entropy of the mixture, we should make the states less
Ryan Snodgrass, Vincent Kotsubo, Scott Backhaus, Joel Ullom
Pulse tube refrigerators are a critical enabling technology for many disciplines that require low temperatures. These refrigerators dominate the total power consumption of most modern cryostats, including those that reach millikelvin temperatures using
Shaun Burd, Hannah Knaack, Raghavendra Srinivas, Christian Arenz, Alejandra Collopy, Laurent Stephenson, Andrew C. Wilson, David Wineland, Dietrich Leibfried, John J. Bollinger, David Allcock, Daniel Slichter
We show experimentally that a broad class of interactions involving quantum harmonic oscillators can be made stronger (amplified) using a unitary squeezing protocol. While our demonstration uses the motional and spin states of a single trapped $^25}$Mg$^+}
We review the current status of efforts to develop and deploy post-quantum cryptography on the Internet. Then we suggest specific ways in which quantum technologies might be used to enhance cybersecurity in the near future and beyond. We focus on two goals
Self-assembled InAs quantum dots (QDs), which have long hole-spin coherence times and are amenable to optical control schemes, have long been explored as building blocks for qubit architectures. One such design consists of vertically stacking two QDs to
Arpit Dua, Aleksander Kubica, Liang Jiang, Steven Flammia, Michael Gullans
Kitaev's toric/surface code and its numerous variants provide promising approaches to practi- cal quantum error correction (QEC). As recently discovered, a careful choice of the code variant and lattice layout can dramatically reduce logical error rate for
Srilekha Gandhari, Victor Albert, Thomas Gerrits, Jacob Taylor, Michael Gullans
Shadow tomography is a framework for constructing succinct descriptions of quantum states, called classical shadows, with powerful methods to bound the estimators used. Classical shadows are well-studied in the discrete-variable case, which consists of sta
Daniel Schug, Tyler Kovach, Jared Benson, Mark Eriksson, Justyna Zwolak
In the physical sciences, there is an increased need for robust feature representations of image data: image acquisition, in the generalized sense of two-dimensional data, is now widespread across a large number of fields, including quantum information