Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 476 - 500 of 1687

Evidence for moire excitons in van der Waals heterostructures

February 25, 2019
Author(s)
Kha Tran, Galan Moody, Travis M. Autry, Kevin L. Silverman, Fengcheng Wu, Junho Choi, Akshay Singh, Jacob Embley, Andre Zepeda, Marshall Cambel, Kyoung Kim, Amritesh Rai, Daniel Sanchez, Takashi Taniguchi, Kenji Watanabe, Li Yang, Nanshu Lu, Sanjay Banerjee, emanuel tutuc, Allan H. MacDonald, Xiaoqin Li
Recent advances in the isolation and stacking of monolayers of van der Waals materials have provided approaches for the preparation of quantum materials in the ultimate two-dimensional limit. In van der Waals heterostructures formed by stacking two

Switchable detector array scheme to reduce the effect of single-photon detector's deadtime in a multi-bit/photon quantum link

February 25, 2019
Author(s)
Cong Liu, YONGXIONG Ren, Jiapeng Zhao, MOHAMMAD MIRHOSSEINI, SEYED RAFSANJANI, GUODONG XIE, Kai Pang, Zhe Zhao, Long Li, Joshua Bienfang, Alan L. Migdall, Todd Brun, Moshe Tur, Robert Boyd, Alan Wilner
We explore the use of a switchable single-photon detector (SPD) array to reduce the effect of individual SPDs' deadtime for a multi-bit/photon quantum link such as M-orbital-angular-momentum (OAM)-encoded one. Our method uses 􀡺 SPDs with a controllable 􀡹 ×

Stacked Josephson Junctions as inductors for SFQ circuits

February 11, 2019
Author(s)
Manuel C. Castellanos Beltran, David I. Olaya, Adam J. Sirois, Paul D. Dresselhaus, Samuel P. Benz, Peter F. Hopkins
In order for Single Flux Quantum (SFQ) circuits to be scaled to densities needed for large-scale integration, typical lithographically-patterned circuit components should be made to be as compact as possible. In this work, we characterize the performance

Coherent light brightens the frontier of quantum science and technology

February 1, 2019
Author(s)
Jun Ye, Margaret Murnane
The precise control of coherent light across a vast spectral span has enabled revolutionary progress in precision measurements and the quantum control of atomic, molecular, and condensed matter systems. The laser was invented about 60 years ago (1) — 30

Parallel Self-Testing of the GHZ State with a Proof by Diagrams

January 31, 2019
Author(s)
Spencer J. Breiner, Amir Kalev, Carl Miller
Quantum self-testing addresses the following question: is it possible to verify the existence of a multipartite state even when one's measurement devices are completely untrusted? This problem has seen abundant activity in the last few years, particularly

Chip-integrated visible-telecom entangled photon pair source for quantum communication

January 21, 2019
Author(s)
Xiyuan Lu, Qing Li, Daron Westly, Gregory Moille, Anshuman Singh, Vikas Anant, Kartik Srinivasan
Photon pair sources are fundamental blocks for quantum entanglement and quantum communication. Recent studies in silicon photonics have documented promising characteristics for photon pair sources within the telecommunications band, including sub-milliwatt

Machine Learning techniques for state recognition and auto-tuning in quantum dots

January 20, 2019
Author(s)
Sandesh Kalantre, Justyna Zwolak, Stephen Ragole, Xingyao Wu, Neil M. Zimmerman, Michael Stewart, Jacob Taylor
Recent progress in building large-scale quantum devices for exploring quantum computing and simulation paradigms has relied upon effective tools for achieving and maintaining good experimental parameters, i.e. tuning up devices. In many cases, including in

Quantum algorithm for simulating the wave equation

January 15, 2019
Author(s)
Pedro C. Costa, Stephen P. Jordan, Aaron Ostrander
We present a quantum algorithm for simulating the wave equation under Dirichlet and Neumann boundary conditions. The algorithm uses Hamiltonian simulation and quantum linear system algorithms as subroutines. It relies on factorizations of discretized

Multi-pulse fitting of transition edge sensor signals from a near-infrared continuous-wave source

December 11, 2018
Author(s)
Thomas Gerrits, Adriana E. Lita, Sae Woo Nam, Jianwei Lee, Lijiong Shen, Alessandro Cere, Christian Kurtsiefer
Transition-edge sensors (TESs) are photon-number resolving calorimetric spectrometers with near unit efficiency. Their recovery time, which is on the order of microseconds, limits the number resolving ability and timing accuracy in high photon-flux