An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Emily Caldwell, Jean-Daniel Deschenes, Jennifer Ellis, William C. Swann, Benjamin Stuhl, Hugo Bergeron, Nathan R. Newbury, Laura Sinclair
The combination of optical time transfer and optical clocks opens up the possibility of large-scale free-space networks that connect both ground-based optical clocks and future space-based optical clocks. Such networks promise better tests of general
Gabriela Martinez, Chao Li, Alexander Staron, John Kitching, Chandra Raman, William McGehee
We demonstrate a passively pumped, chip-scale atomic beam clock fabricated using a stack of silicon and glass wafers. The device could additionally serve as a platform for compact atom interferometers and other future quantum sensors.
A new microwave cavity assembly has been designed and fabricated for use in the primary frequency standards at the National Institute of Standards and Technology (NIST). We will describe the design of the cavity and present results from the manufacturing
The Time and Frequency Bulletin provides information on performance of time scales and a variety of broadcasts (and related information) to users of the NIST services.
Chad Ropp, Wenqi Zhu, Alexander Yulaev, Daron Westly, Gregory Simelgor, Akash Rakholia, William Lunden, Dan Sheredy, Martin Boyd, Scott Papp, Amit Agrawal, Vladimir Aksyuk
The commercialization of atomic technologies requires replacing laboratory-scale laser setups with compact and manufacturable optical platforms. Complex arrangements of free-space beams can be generated on chip through a combination of integrated photonics
Ivan Burenkov, Alexandra Semionova, FNU Hala, Thomas Gerrits, Anouar Rahmouni, DJ Anand, Ya-Shian Li-Baboud, Oliver T. Slattery, Abdella Battou, Sergey Polyakov
We investigate the coexistence of clock synchronization protocols with quantum signals in a common single-mode optical fiber. By measuring optical noise between 1500 nm to 1620 nm we demonstrate a potential for up to 100 quantum DWDM channels coexisting
Megan Kelleher, Charles McLemore, Dahyeon Lee, Josue Davila-Rodriguez, Scott Diddams, Franklyn Quinlan
We develop and demonstrate a compact (less than 6 mL) portable Fabry-Pérot optical reference cavity. A laser locked to the cavity is thermal noise limited at 2 × 10−14 fractional frequency stability. Broadband feedback control with an electro-optic
Radio station WWV, famous for the "at the tone ...." announcements broadcast at the top of each minute, is known to shortwave listeners and radio amateurs worldwide as a trusted source of accurate time. However, you might not know that the original purpose
We present measurements of the timing accuracy and stability of Satellite Time and Location (STL) receivers with respect to UTC(NIST), the coordinated universal time scale (UTC) operated by the National Institute of Standards and Technology (NIST). STL is
We demonstrate strontium (Sr) atomic vapor cells having a total external volume of 0.63 cm3 that can operate above 300 °C for times exceeding 380 h. The cells are fabricated using micromachined silicon frames anodically bonded to glass windows that have a
Vladimir Schkolnik, Dmitry Budker, Oliver Farttman, Victor Flambaum, Leo Hollberg, Tigran Kalaydzhyan, Shimon Kolkowitz, Markus Krutzik, Andrew Ludlow, Nathan R. Newbury, Christopher Pyrlik, Laura Sinclair, Yevgeny Stadnik, Ingmari Tietje, Jun Ye, Jason Williams
We present a concept for a high-precision optical atomic clock (OAC) operating on an Earth-orbiting space station. This pathfinder science mission will compare the space-based OAC with one or more ultra-stable terrestrial OACs to search for space-time
Emily Caldwell, Laura Sinclair, Nathan R. Newbury, Jean-Daniel Deschenes
Two decades after its invention, the frequency comb is an unparalleled ruler for frequency, time, and distance metrology due to the rigid spacing of its optical output. Here, in contrast, we demonstrate a programable frequency comb by combining self
Feng Zhou, Xiyuan Lu, Ashutosh Rao, Jordan Stone, Gregory Moille, Edgar Perez, Daron Westly, Kartik Srinivasan
Optical parametric oscillation (OPO) using the third-order nonlinearity (X(3)) in integrated photonics platforms is an emerging approach for coherent light generation, and has shown great promise in achieving broad spectral coverage with small device