Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 326 - 350 of 433

Prevention of Cooktop Ignition Using Detection and Multi-Step Machine Learning Algorithms

May 8, 2020
Author(s)
Wai Cheong Tam, Eugene Yujun Fu, Amy E. Mensch, Anthony P. Hamins, Christina Yu, Grace Ngai, Hong va Leong
This paper presents a study to examine the potential use of machine learning models to build a real-time detection algorithm for prevention of kitchen cooktop fires. Sixteen sets of time- dependent sensor signals were obtained from 60 normal/ignition

Streaming Batch Gradient Tracking for Neural Network Training

April 3, 2020
Author(s)
Siyuan Huang, Brian D. Hoskins, Matthew W. Daniels, Mark D. Stiles, Gina C. Adam
Faster and more energy efficient hardware accelerators are critical for machine learning on very large datasets. The energy cost of performing vector-matrix multiplication and repeatedly moving neural network models in and out of memory motivates a search

Auto-tuning of double dot devices it in situ with machine learning

March 31, 2020
Author(s)
Justyna Zwolak, Thomas McJunkin, Sandesh Kalantre, J. P. Dodson, Evan MacQuarrie, D. E. Savage, M. G. Lagally, S N. Coppersmith, Mark A. Eriksson, Jacob Taylor
The current practice of manually tuning quantum dots (QDs) for qubit operation is a relatively time- consuming procedure that is inherently impractical for scaling up and applications. In this work, we report on the \it in situ} implementation of a

Summary: Workshop on Machine Learning for Optical Communication Systems

March 26, 2020
Author(s)
Joshua A. Gordon, Abdella Battou, Michael P. Majurski, Dan Kilper, Uiara Celine, Massimo Tonatore, Joao Pedro, Jesse Simsarian, Jim Westdorp, Darko Zibar
Optical communication systems are expected to find use in new applications that require more intelligent and automated functionality. Optical networks are needed to address the high speeds and low latency of 5G wireless networks. The analog nature of

Workshop on Machine Learning for Optical Communication Systems: a summary

March 8, 2020
Author(s)
Joshua A. Gordon, Abdella Battou, Dan Kilper
A summary and overview of a public workshop on machine learning for optical Communication systems held on August 2nd 2019, by the Communications Technology Laboratory at the National Institute of Standards and Technology in Boulder, CO.

Energy-efficient stochastic computing with superparamagnetic tunnel junctions

March 5, 2020
Author(s)
Matthew W. Daniels, Advait Madhavan, Philippe Talatchian, Alice Mizrahi, Mark D. Stiles
Stochastic computing has been limited by the inaccuracies introduced by correlations between the pseudorandom bitstreams used in the calculation. We hybridize a stochastic version of magnetic tunnel junctions with basic CMOS logic gates to create a

Ray-based classification framework for high-dimensional data

February 3, 2020
Author(s)
Justyna Zwolak, Jacob Taylor, Sandesh Kalantre, Thomas McJunkin, Brian Weber
While classification of arbitrary structures in high dimensions may require complete quantitative information, for simple geometrical structures, low-dimensional qualitative information about the boundaries defining the structures can suffice. Rather than