Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 51 - 75 of 1439

On the "intrinsic" breakdown of thick gate oxide

October 12, 2022
Author(s)
Kin (Charles) Cheung
Thick gate oxide breakdown mechanism becomes an important topic again due to the rising demand of power electronics. The failure of the percolation model in explaining the observed Weibull shape factor of thick oxide breakdown distribution seriously

Towards the Physical Reliability of 3D-Integrated Systems: Broadband Dielectric Spectroscopic (BDS) Studies of Material Evolution and Reliability in Integrated Systems

September 30, 2022
Author(s)
Papa Amoah, Joseph J. Kopanski, Yaw S. Obeng, Christopher Sunday, Chukwudi Okoro, Lin You, Dmirty Veksler
In this paper, we present an overview of our current research focus in developing non-destructive metrology for monitoring reliability issues in 3D-integrated electronic systems. We introduce a suite of non-destructive metrologies that can serve as early

Degradation of CVD-Grown MoS2 Subjected to DC Electrical Stress

September 16, 2022
Author(s)
Elisabeth Mansfield, David Goggin, Jason Killgore, Taylor Aubry
Devices containing transition metal dichalcogenides are being investigated for next generation electronics. Understanding material properties under typical use conditions is important for longevity and effectiveness of these devices. In this study, CVD

Control of the Schottky barrier height in monolayer WS2 FETs using molecular doping

August 26, 2022
Author(s)
Siyuan Zhang, Hsun-Jen Chuang, SON LE, Curt A. Richter, Kathleen McCreary, Berend Jonker, Angela R. Hight Walker, Christina Hacker
The development of processes to controllably dope two-dimensional semiconductors is critical to achieving next generation electronic and optoelectronic devices. Understanding the nature of the contacts is a critical step for realizing efficient charge

Strategic Opportunities for U.S. Semiconductor Manufacturing

August 1, 2022
Author(s)
Anita Balachandra, David Gundlach, Paul D. Hale, Kevin K. Jurrens, R Joseph Kline, Tim McBride, Ndubuisi George Orji, Sanjay (Jay) Rekhi, Sivaraj Shyam-Sunder, David G. Seiler
Semiconductors are critical to our Nation's economic growth, national security, and public health and safety. Revolutionary advances in microelectronics continue to drive innovations in communications, information technology, health care, military systems

How to Report and Benchmark Emerging Field-Effect Transistors

July 29, 2022
Author(s)
Zhihui Cheng, Chin-Sheng Pan, Peiqi Wang, Yanqing Wu, Davood Shahrjerdi, Iuliana Radu, Max Lemme, Lian-Mao Peng, Xiangfeng Duan, Zhihong Chen, Joerg Appenzeller, Steven Koester, Eric Pop, Aaron Franklin, Curt A. Richter
Emerging low-dimensional nanomaterials have been studied for decades in device applications as field-effect transistors (FETs). However, properly reporting and comparing device performance has been challenging due to the involvement and interlinking of

Determination of Domain Wall Velocity and Nucleation Time by Switching Dynamics Studies of Ferroelectric Hafnium Zirconium Oxide

July 22, 2022
Author(s)
Xiao Lyu, Pragya Shrestha, Mengwei Si, Panni Wang, Junkang Li, Kin (Charles) Cheung, Yu Shimeng, Peide Ye
In this work, we present the first experimental determination of nucleation time and domain wall (DW) velocity by studying switching dynamics of ferroelectric (FE) hafnium zirconium oxide (HZO). Experimental data and simulation results were used to

Multi-bit per-cell 1T SiGe Floating Body RAM for Cache Memory in Cryogenic Computing

July 22, 2022
Author(s)
Pragya Shrestha, Jason Campbell, Wriddhi Chakraborty, A Gupta, R Saligram, S Spetalnick, A Raychowdhury, Suman Datta
Cryogenic computing requires high-density on-die cache memory with low latency, high bandwidth and energy-efficient access to increase cache hit and maximize processor performance. Here, we experimentally demonstrate, high-speed multi-bit memory operation

Gate resistance thermometry: An electrical thermal characterization technique

July 15, 2022
Author(s)
Georges Pavlidis, Brian Foley, Samuel Graham
Gate Resistance Thermometry (GRT) is a potential reliable technique to determine the average temperature of the gate metal in GaN transistors. In contrast to other electrical techniques that average the temperature across different areas of the active
Displaying 51 - 75 of 1439