Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: David J. Wineland (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 201 - 225 of 482

Surface-Electrode Architecture for Ion-Trap Quantum Information Processing

September 1, 2005
Author(s)
J Chiaverini, Brad R. Blakestad, Joseph W. Britton, John D. Jost, C. Langer, Dietrich G. Leibfried, R Ozeri, David J. Wineland
We investigate a surface-mounted electrode geometry for miniature linear radio frequency Paul ion traps. The electrodes reside in a single plane on a substrate, and the pseudopotential minimum of the trap is located above the substrate at a distance on

Long-Lived Qubit Memory Using Atomic Ions

August 5, 2005
Author(s)
C. Langer, R Ozeri, John D. Jost, J Chiaverini, B. L. DeMarco, A. Ben-Kish, Brad R. Blakestad, Joseph W. Britton, David Hume, Wayne M. Itano, Dietrich G. Leibfried, Rainer Reichle, Till P. Rosenband, Tobias Schaetz, Piet Schmidt, David J. Wineland
We demonstrate experimentally a robust quantum memory using a magnetic-field-independent hyperfine transition in 9Be + atomic ioin qubits at a magnetic field B=0.01194 T. We observe the single physical qubit memory coherence time to be greater than 10

Spectroscopy Using Quantum Logic

July 29, 2005
Author(s)
Piet Schmidt, Till P. Rosenband, C. Langer, Wayne M. Itano, James C. Bergquist, David J. Wineland
We have demonstrated experimentally a general technique for precision spectroscopy of atoms that lack suitable transitions for efficient laser cooling, internal state preparation, and detection. In our implementation with trapped atomic ions, an auxillary

Spectroscopy of a single Al + ion via coupling to Be +

July 25, 2005
Author(s)
Till P. Rosenband, Piet Schmidt, Jeroen Koelemeij, Wayne M. Itano, Yohei Kobayashi, Tara M. Fortier, Scott A. Diddams, James C. Bergquist, David J. Wineland
We perform precision spectroscopy on 27Al + with the aid of a 9Be + ion. Using sympathetic cooling and quantum state transfer, we efficiently interrogate the 1S 0 – 3P 1 and 1S 0 – 3P 0 transitions.

Hyperfine Coherence in the Presence of Spontaneous Photon Scattering

July 15, 2005
Author(s)
R Ozeri, C. Langer, John D. Jost, B. L. DeMarco, A. Ben-Kish, Brad R. Blakestad, Joseph W. Britton, J Chiaverini, Wayne M. Itano, David Hume, Dietrich G. Leibfried, Till P. Rosenband, Piet Schmidt, David J. Wineland
The coherence of hyperfine-state superpositions of a trapped 9Be + ion is experimentally studied in the presence of off-resonant light. It is shown that Rayleigh elastic scattering of photons that does not change state populations also does not affect

Quantum Control, Quantum Information Processing, and Quantum-Limited Metrology With Trapped Ions

June 19, 2005
Author(s)
David J. Wineland, Dietrich G. Leibfried, Murray D. Barrett, A. Ben-Kish, James C. Bergquist, Brad R. Blakestad, John J. Bollinger, Joseph W. Britton, J Chiaverini, B. L. DeMarco, David Hume, Wayne M. Itano, M J. Jensen, John D. Jost, Emanuel H. Knill, Jeroen Koelemeij, C. Langer, Windell Oskay, R Ozeri, Rainer Reichle, Till P. Rosenband, Tobias Schaetz, Piet Schmidt, Signe Seidelin
We briefly discuss recent experiments on quantum informaiton processing using trapped ions at NIST. A central theme of this work has been to increase our capabilities in terms of quantum computing protocols, but we have also been interested in applying the

Implementation of the semiclassical quantum Fourier transform in a scalable system

May 13, 2005
Author(s)
J Chiaverini, Joseph W. Britton, Dietrich G. Leibfried, Emanuel H. Knill, Murray D. Barrett, Brad R. Blakestad, Wayne M. Itano, John D. Jost, C. Langer, R Ozeri, Tobias Schaetz, David J. Wineland
One of the most interesting future applications of quantum computers is Shor's factoring algorithm, which provides an exponential speedup compared to known classical algorithms. The crucial final step in Shor's algorithm is the quantum Fourier transform

Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System

May 1, 2005
Author(s)
J. Chiaverini, J. Britton, D. Leibfried, Emanuel Knill, M D. Barrett, R. B. Blakestad, W M. Itano, J. D. Jost, C. Langer, R Ozeri, T Schaetz, D Britton, David J. Wineland
The n-qubit concurrence canonical decomposition (CCD) is a generalization of the two-qubit canonical decomposition SU(4)=[SU(2) (x) SU(2)] ? [SU(2) (x) SU(2)], where ? is the commutative group which phases the maximally entangled Bell basis. A prequel

Enhanced Quantum State Detection Efficiency Through Quantum Information Processing

January 1, 2005
Author(s)
T Schaetz, Murray D. Barrett, Dietrich G. Leibfried, Joseph W. Britton, J Chiaverini, Wayne M. Itano, John D. Jost, E Knill, Christopher Langer, David J. Wineland
We investigate theoretically and experimentally how quantum state-detection efficiency is improved by the use of quantum information processing (QIP). Experimentally, we encode the state of one 9Be ion qubit with one additional ancilla qubit. By measuring

Realization of quantum error correction

December 2, 2004
Author(s)
J Chiaverini, Dietrich G. Leibfried, Tobias Schaetz, Murray D. Barrett, Brad R. Blakestad, Joseph W. Britton, Wayne M. Itano, John D. Jost, Emanuel H. Knill, C. Langer, R Ozeri, David J. Wineland
Scalable quantum computation and communication require error control to protect quantum information against unavoidable noise. Quantum error correction protects quantum information stored in two-level quantum systems (qubits) by rectifying errors with

Realization of Quantum Error Correction

December 1, 2004
Author(s)
J. Chiaverini, D. Leibfried, T Schaetz, M D. Barrett, R. B. Blakestad, J. Britton, W M. Itano, J. D. Jost, Emanuel Knill, C. Langer, R Ozeri, David J. Wineland
The n-qubit concurrence canonical decomposition (CCD) is a generalization of the two-qubit canonical decomposition SU(4)=[SU(2) (x) SU(2)] ? [SU(2) (x) SU(2)], where ? is the commutative group which phases the maximally entangled Bell basis. A prequel

Quantum information processing with trapped ions

July 25, 2004
Author(s)
Murray D. Barrett, Tobias Schaetz, J Chiaverini, Dietrich Leibfried, Joseph W. Britton, Wayne M. Itano, John D. Jost, Emanuel Knill, C. Langer, R Ozeri, David J. Wineland
We report experiments on the creation and manipulation ofmulti-particle entangled states of trapped atomic ions. The experiments reported here, quantum dense coding and quantum teleportation, constitute a significant step toward performing large-scale