Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Paul A. Williams (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 229

Optical Measurements of Dynamic Absorptance during High-power Laser Spot Welding

May 7, 2018
Author(s)
Brian Simonds, Jeffrey W. Sowards, Joshua A. Hadler, Boris Wilthan, Erik A. Pfeif, Jack R. Tanner, Chandler Harris, Paul A. Williams, John Lehman
We present precision measurements of the time-dependent absorptance during a 10 ms fiber-laser spot weld on 316L stainless steel. From these, the precise time and energy at which a keyhole is formed can be determined.

Geometric contributions to chopper wheel optical attenuation uncertainty

December 9, 2017
Author(s)
Matthew T. Spidell, Joshua A. Hadler, Michelle S. Stephens, John H. Lehman, Paul A. Williams
Calibrated reflective optical choppers are used in NIST’s high power laser calibration services due to their advantages in performance and safety over wedges and semi-transparent materials for beam power reduction. While the design, operation, and

On-site multi-kilowatt laser power meter calibration using radiation pressure

December 1, 2017
Author(s)
Paul A. Williams, Joshua A. Hadler, Brian J. Simonds, John H. Lehman
We have demonstrated the calibration of a thermal power meter against a radiation-pressure power meter in the range of 20 kW in a manufacturing test environment. The results were compared to a traditional calorimeter-based laboratory calibration undertaken

Prototype Tests of a Miniature Radiation Pressure Sensor

July 2, 2017
Author(s)
Alexandra B. Artusio-Glimpse, Paul A. Williams, Nathan A. Tomlin, Ivan Ryger, Michelle S. Stephens, John H. Lehman
Using reflection, radiation pressure (RP) sensors provide a means for in-situ power measurement simply and accurately. The first realization of multi-kW RP power meters (RPPM) established a new paradigm of optical power measurement technology [1]. Our

Silicon Micromachined Capacitive Force Scale: The Way to Improved Radiation Pressure Sensing

July 2, 2017
Author(s)
Ivan Ryger, Paul A. Williams, Nathan A. Tomlin, Alexandra B. Artusio-Glimpse, Michelle S. Stephens, Matthew T. Spidell, John H. Lehman
Measurement of high optical power using radiation pressure sensing [1] is attractive for its non-absorbing power measurment allowing compact sensor dimensions, faster response times and negligible optical power dissipation compared to standard thermal

Portable high-accuracy non-absorbing laser power measurement at kilowatt levels by means of radiation pressure

February 16, 2016
Author(s)
Paul A. Williams, Joshua A. Hadler, Frank C. Maring, Robert Lee, Kyle A. Rogers, Brian J. Simonds, Matthew T. Spidell, Ari D. Feldman, John H. Lehman
We describe a unique optical power meter which measures the radiation pressure to accurately determine a laser’s optical power output. This approach traces its calibration of the optical Watt to the kilogram. Our power meter is designed for high-accuracy

Progress toward Radiation-Pressure-Based Measurement of High-Power Laser Emission - Under Policy Review

October 6, 2014
Author(s)
Paul A. Williams, Joshua A. Hadler, Daniel King, Robert Lee, Frank C. Maring, Gordon A. Shaw, Nathan A. Tomlin, John H. Lehman, Marla L. Dowell
We present an overview of our efforts toward using optical radiation pressure as a means to measure optical power from high-power lasers. Early results with measurements ranging from tens of watts to 92 kW prove the concept, but validation uncertainties

Use of radiation pressure for measurement of high-power laser emission

October 15, 2013
Author(s)
Paul A. Williams, Joshua A. Hadler, Robert Lee, Frank Maring, John H. Lehman
We demonstrate a paradigm in absolute laser radiometry where a laser beam's power can be measured from its radiation pressure. Using an off-the-shelf high-accuracy mass scale and a 500 W Yb-doped fiber laser and a 92 kW CO2 laser, we show preliminary