Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Thomas J. Silva (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 76 - 100 of 270

Comment on Detection of Microwave Spin Pumping Using the Inverse Spin Hall Effect

January 27, 2014
Author(s)
Thomas J. Silva, Mathias A. Weiler, Hans T. Nembach, Justin M. Shaw
In a recent Letter, Hahn et al. reported on the detection of an ac voltage in a yttrium iron garnet (YIG)/platinum (Pt) bilayer under the condition of parametrically excited resonance. The authors observe an ac voltage at the frequency of the magnetization

Reply to "Comment on: 'Ultrafast Demagnetization Measurements Using Extreme Ultraviolet Light: Comparison of Electronic and Magnetic Contributions'"

September 4, 2013
Author(s)
Justin Shaw, Thomas J. Silva, Hans Nembach, Emrah Turgut, Patrik Grychtol, Chan La-O-Vorakiat, Henry C. Kapteyn, Margaret M. Murnane, Stefan Mathias, Martin Aeschlimann, Claus Schneider, Daniel E. Adams
In the following, we show that the conclusions of our article titled "Ultrafast Demagnetization Measurements Using Extreme Ultraviolet Light: Comparison of Electronic and Magnetic Contributions" are correct. The Comment of Vodungbo et al. argues that a

Controlling the Competition between Optically Induced Ultrafast Spin-Flip Scattering and Spin Transport in Magnetic Multilayers

May 7, 2013
Author(s)
Justin Shaw, Hans Nembach, Thomas J. Silva, Margaret M. Murnane, Henry C. Kapteyn, Martin Aeschlimann, Claus M. Schneider, Emrah Turgut, Stefan Mathias, Patrik Grychtol, Chan La-O-Vorakiat, Dennis Rudolf, Roman Adam
The study of ultrafast dynamics in magnetic materials provides rich opportunities for greater fundamental understanding of correlated phenomena in solid-state matter, because many of the basic microscopic mechanisms involved are as-yet unclear and are

Ultrafast element-specific magnetization Dynamics of complex magnetic materials on a table-top

December 21, 2012
Author(s)
Thomas J. Silva, Justin M. Shaw, Hans T. Nembach, Chan La-O-Vorakiat, Henry C. Kapteyn, Margaret M. Murnane, Stefan Mathias, Roman Adam, Patrik Grychtol, Martin Aeschlimann, Claus M. Schneider, Emrah Turgut, Dennis Rudolf
We review recent progress in femtosecond magnetization dynamics probed by extreme ultraviolet pulses from high-harmonic generation. In a transverse magneto-optical Kerr geometry, we establish an ultrafast, element-specific experimental capability - on a

Spin Dynamics in the Time and Frequency Domain

September 15, 2012
Author(s)
Thomas J. Silva
The current status of experimental approaches to analyze the spin wave dynamics in ferromagnetic nanoscale structures is reviewed. Recent developments in frequency- and field swept spectroscopy to determine the resonant response of nanoscale ferromagnets

Ultrafast manetization enhancement in metallic multilayers driven by superdiffusive spin current

September 4, 2012
Author(s)
Thomas J. Silva, Justin M. Shaw, Hans T. Nembach, Dennis Rudolf, Chan La-O-Vorakiat, Marco Battiato, Roman Adam, Emrah Turgut, Stefan Mathias, Margaret M. Murnane, Henry C. Kapteyn, Claus M. Schneider
Uncovering the physical mechanisms that govern ultrafast charge and spin dynamics is crucial for understanding correlated matter as well as the fundamental limits of ultrafast spin-based electronics. Spin dynamics in magnetic materials can be driven by

Propagation and control of nano-scale, magnetic droplet solitons

June 11, 2012
Author(s)
Thomas J. Silva, Mark Hoefer, Matteo Sommacal
The propagation and controlled manipulation of strongly nonlinear, two-dimensional solitonic states in a thin, anisotropic ferromagnet is theoretically demonstrated. It has been recently proposed that spin polarized currents in a nanocontact device could

Probing the timescale of the exchange interaction in a ferromagnetic alloy

January 27, 2012
Author(s)
Justin M. Shaw, Stefan Mathias, Chan La-O-Vorakiat, Hans T. Nembach, Thomas J. Silva, Mark Siemens, Henry Kapteyn, Margaret Murnane
The underlying physics of all ferromagnetic behavior is the cooperative interaction between individual atomic magnetic moments that results in a macroscopic magnetization. In this work, we use extreme ultraviolet pulses from high-harmonic generation as an