Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Adriana E. Lita (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 126 - 150 of 167

Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime

September 19, 2011
Author(s)
Thomas Gerrits, Brice R. Calkins, Nathan A. Tomlin, Adriana E. Lita, Alan L. Migdall, Sae Woo Nam, Richard P. Mirin
Photon number resolving transition-edge sensors (TES) are the cutting-edge enabling technology for high quantum efficiency photon number counting. The TES developed at NIST reliably show system detection efficiencies of more than 95%, and even approach 99%

Characterization of high-purity, pulsed squeezed light at telecom wavelengths from pp-KTP for quantum information applications

May 1, 2011
Author(s)
Thomas Gerrits, Burm Baek, Martin J. Stevens, Brice R. Calkins, Adriana E. Lita, Scott C. Glancy, Emanuel H. Knill, Sae Woo Nam, Richard P. Mirin, Robert Hadfield, Ryan Bennink, Warren Grice, Sander N. Dorenbos, Tony Zijlstra, Teun Klapwijk, Val Zwiller
We characterize a pp-KTP crystal designed to produce pure single mode squeezed vacuum at 1570 nm. Measurements show Hong-Ou-Mandel interference with 97% visibility and a circular joint spectral distribution with a Schmidt number of 1.08.

Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent

April 25, 2011
Author(s)
Aaron J. Miller, Adriana Lita, Brice R. Calkins, Igor Vayshenker, Stephen Gruber, Sae Woo Nam
We present a compact packaging technique for coupling light from a single-mode telecommunication fiber to cryogenic singlephoton sensitive devices. Our single-photon detectors are superconducting transition-edge sensors (TESs) with a collection area only a

Characterization of high-purity, pulsed squeezed light at telecom wavelengths from pp-KTP for quantum information applications

December 1, 2010
Author(s)
Thomas Gerrits, Burm Baek, Martin J. Stevens, Brice R. Calkins, Adriana E. Lita, Scott C. Glancy, Emanuel H. Knill, Sae Woo Nam, Richard P. Mirin, Robert Hadfield, Ryan Bennink, Warren Grice, Sander N. Dorenbos, Tony Zijlstra, Teun Klapwijk, Val Zwiller
Pure optical squeezing in a single mode is highly desirable for quantum information applications such as continuous variable quantum computing and the generation of optical Schrödinger cat states. To generate optical cat states, photons are subtracted from

Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum

September 9, 2010
Author(s)
Thomas Gerrits, Scott C. Glancy, Tracy S. Clement, Brice R. Calkins, Adriana E. Lita, Aaron Miller, Aaron J. Miller, Alan L. Migdall, Sae Woo Nam, Richard P. Mirin, Emanuel H. Knill
We have created heralded coherent-state superpositions (CSSs) by subtracting up to three photons from a pulse of squeezed vacuum light. To produce such CSSs at a sufficient rate, we used our high-efficiency photon-number-resolving transition edge sensor to

Superconducting Transition-Edge Sensors for Waveguide Coupled Single Photon Detection

July 25, 2010
Author(s)
Anna E. Fox, Adriana E. Lita, Brice R. Calkins, Kevin L. Silverman, Richard P. Mirin, Sae Woo Nam
We present the design and important preliminary superconducting properties of an evanescently coupled number resolving single photon detector operating near 1550 nm in development for integration into a silicon-on-insulator waveguide based optical system.

Generation of optical Schrodinger cat states by number-resolved squeezed photon subtraction

July 23, 2010
Author(s)
Thomas Gerrits, Scott C. Glancy, Tracy S. Clement, Brice R. Calkins, Adriana E. Lita, Aaron J. Miller, Alan L. Migdall, Aaron J. Miller, Sae Woo Nam, Richard P. Mirin, Emanuel H. Knill
We have generated and measured an approximation of an optical Schrödinger cat state by photon subtraction from squeezed vacuum. Figure 1 shows the experimental scheme. Photons are probabilistically subtracted from squeezed vacuum and detected with a photon

Innovations in Maximum Likelihood Quantum State Tomography

October 9, 2009
Author(s)
Scott C. Glancy, Emanuel H. Knill, Thomas Gerrits, Tracy S. Clement, Brice R. Calkins, Adriana E. Lita, Aaron J. Miller, Alan L. Migdall, Sae Woo Nam, Richard P. Mirin
At NIST we are engaged in an experiment whose goal is to create superpositions of optical coherent states (such superpositions are sometimes called "Schroedinger cat" states). We use homodyne detection to measure the light, and we apply maximum likelihood

High-efficiency photon-number resolving detectors based on hafnium transition-edge sensors

September 1, 2009
Author(s)
Adriana E. Lita, Brice R. Calkins, Lenson Pellouchoud, Aaron J. Miller, Sae Woo Nam
Generation of non-classical states of light is at the foundation of numerous quantum optics experiments and optical quantum information processing implementations. One such non-Gaussian optical quantum state can be obtained by photon subtraction from a

Generation of optical Schrodinger cat states by number-resolved squeezed photon subtraction

May 31, 2009
Author(s)
Thomas Gerrits, Scott C. Glancy, Tracy S. Clement, Brice R. Calkins, Adriana E. Lita, Aaron J. Miller, Alan L. Migdall, Sae Woo Nam, Richard P. Mirin, Emanuel H. Knill
We have generated and measured an approximation of an optical Schrödinger cat state by photon subtraction from a squeezed state. Using single-photon avalanche photodiode detectors and photon-number-resolving transition edge sensors, we were able to extract

Counting near-infrared single-photons with 95% efficiency

February 20, 2008
Author(s)
Adriana E. Lita, Aaron J. Miller, Sae Woo Nam
Single-photon detectors operating at visible and near-infrared wavelengths with high detection efficiency and low noise are a requirement for many quantum-information applications. Superconducting transition-edge sensors (TESs) are capable of detecting