Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: John Vinson (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 84

Origin of enhanced water oxidation activity in an iridium single atom anchored on NiFe oxyhydroxide catalyst

August 31, 2021
Author(s)
Xueli Zheng, Jing Tang, Allesandro Gallo, Jose A. Garrido Torres, Xiaoyun Yu, Peter Ercius, Haiyan Mao, Emily Been, Constantine J. Athanitis, Sirine C. Fakra, Chengyu Song, Ryan Davis, Jeffrey A. Reimer, John Vinson, Michal Bajdich, Yi Cui
The efficiency of the synthesis of renewable fuels and feedstocks from electrical sources is limited, at present, by the sluggish water oxidation reaction. Single-atom catalysts (SACs) with a controllable coordination environment and exceptional atom

Coulombically-stabilized oxygen hole polarons enable fully reversible oxygen redox

July 1, 2021
Author(s)
Iwnetim I. Abate, Chaitanya D. Pemmaraju, Se-Young Kim, Sami Sainio, Brian Moritz, John Vinson, Michael F. Toney, Wanli Yang, William E. Gent, Thomas P. Devereaux, Linda F. Nazar, William C. Chueh
Stabilizing high-valent redox couples and exotic electronic states necessitates an understanding of the stabilization mechanism. In oxides, whether they are being considered for energy storage or computing, highly oxidized oxide-anion species rehybridize

Database of Ab Initio L-edge X-ray Absorption Near Edge Structure

June 11, 2021
Author(s)
Yiming Chen, Chi Chen, Chen Zheng, Shyam Dwaraknath, Matthew K. Horton, Jordi Cabana, John J. Rehr, John Vinson, Alan K. Dozier, Kristin A. Persson, Shyue P. Ong
The L-edge X-ray Absorption Near Edge Structure (XANES) is widely used in the characterization of transition metal compounds. Here, we report the development of a database of computed L-edge XANES using the multiple scattering theory-based FEFF9 code. The

2p x-ray absorption spectroscopy of 3d transition metal systems

April 3, 2021
Author(s)
Eric L. Shirley, John Vinson, Frank de Groot, Hebatalla Elnaggar, Federica Frati, Ru-pan Wang, Mario Delgado, Michel van Veenendaal, Maurits Haverkort, Robert Green, Yaroslav Kvashnin, Atsushi Hariki, Harry Ramanantoanina, Claude Daul, Bernard Delley, Michael Odelius, Marcus Lundberg, Oliver Kuhn, Sergey Bokarev, Keith Gilmore, Mauro Stener, Giovanni Fronzoni, Piero Decleva, Peter Kruger, Marius Retegan, Javier Fernandez-Rodriguez, Gerritt van der Laan, Yves Joly, Christian Vorwerk, Claudia Draxl, John Rehr, Arata Tanaka, Hidekazu Ikeno
A variety of methods are presented that are presently used to treat x-ray absorption spectra of transition-metal 2p edges in a wide range of compounds. Different methods include different methods of chemical realism versus featuring the simplifications of

The OCEAN Project

March 10, 2021
Author(s)
Eric L. Shirley, John T. Vinson, Keith Gilmore
This chapter presents a high-level description of a suite of programs denoted by the acronym OCEAN (Obtaining Core Excitation spectra ab initio and with NBSE), where NBSE denotes the underlying NIST Bethe-Salpeter Equation program. The main computational

Operando Study of Thermal Oxidation of Monolayer MoS2

March 1, 2021
Author(s)
Sangwook Park, Angel Garcia-Esparza, Hadi Abroshan, Baxter Abraham, John Vinson, Allesandro Gallo, Dennis Nordlund, Joonsuk Park, Taeho R. Kim, Roberto Alonso-Mori, Dimosthenis Sokaras, Xiaolin Zheng
Monolayer MoS2 is a promising semiconductor to overcome the physical dimension limits of the microelectronic devices. Understanding the thermochemical stability of MoS2 is essential since these devices generate heat and are susceptible to oxidative

The anisotropy in the optical constants of quartz crystals for soft X-rays

February 19, 2021
Author(s)
Anna Andrle, Phillipp H?nicke, John Vinson, Richard Quintanilha, Qais Saadeh, Sebastian Heidenreich, Frank Scholze, Victor Soltwisch
The refractive index of a y-cut SiO2 crystal surface is reconstructed from orientation-dependent soft X-ray reflectometry measurements in the energy range from 45 to 620 eV. Owing to the anisotropy of the crystal structure in the (100) and (001) directions

Site-Specific Structure at Multiple Length Scales in Kagome Quantum Spin Liquid Candidates

December 14, 2020
Author(s)
Rebecca W. Smaha, Idris Boukahil, Charles J. Titus, Jack Mingde Jiang, John P. Sheckelton, Wei He, JiaJia Wen, John Vinson, SuYin G. Wang, Yu-Sheng Chen, Simon J. Teat, Thomas P. Devereaux, Chaitanya D. Pemmaraju, Young S. Lee
Realizing a quantum spin liquid (QSL) ground state in a real material is a leading issue in condensed matter physics research. In this pursuit, it is crucial to fully characterize the structure and influence of defects, as these can significantly affect

Restricting Orbital Angular Momentum by Transverse Coherence

September 5, 2020
Author(s)
Ronald L. Cappelletti, John T. Vinson
A traveling wave or wave packet may possess orbital angular momentum in the form of a phase vortex about its axis of propagation. These orbital angular momentum states are a general wave phenomenon, and, as such, can be realized for individual wave packets