Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Alexander Grutter (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 138

Observation of Quantum Anomalous Hall Effect and Exchange Interaction in Topological Insulator/Antiferromagnet Heterostructure

August 27, 2020
Author(s)
Lei Pan, Alexander Grutter, Peng Zhang, Xiaoyu Che, Tomohiro Nozaki, Alex Stern, Mike Street, Bing Zhang, Brian Casas, Qing L. He, Eun S. Choi, Steven M. Disseler, Dustin Gilbert, Gen Yin, Qiming Shao, Peng Deng, Yingying Wu, Xiaoyang Liu, Xufeng Kou, Sahashi Masashi, Xiaodong Han, Christian Binek, Scott Chambers, Jing Xia, Kang L. Wang
Integration of a quantum anomalous Hall insulator with a magnetically ordered material provides an additional degree of freedom through which we may control the resulting exotic quantum states. Here, we report an experimental observation of the quantum

Termination Switching of Antiferromagnetic Proximity Effect in Topological Insulator

August 12, 2020
Author(s)
Chao-Yao Yang, Lei Pan, Alexander Grutter, Haiying Wang, Xiaoyu Che, Qing L. He, Yingying Wu, Dustin A. Gilbert, Padraic Shafer, Elke Arenholz, Hao Wu, Gen Yin, Peng Deng, Julie Borchers, William D. Ratcliff, Kang L. Wang
The magnetic proximity effect (MPE) allows exchange-coupling of topological insulators (TIs) with magnetically ordered materials to break time-reversal-symmetry and open a gap in the Dirac-cone surface state, with the goal of realizing quantum anomalous

Differentiation between Strain and Charge Mediated Magnetoelectric Coupling in La 0.7 Sr 0.3 MnO 3 /Pb(Mg 1/3 Nb 2/3) d0.7^Ti 0.3 O 3 (001)

June 17, 2020
Author(s)
T. Bhatnagar-Schoffmann, Emmanuel Kentzinger, A. Sarkar, P. Schoffmann, Q. Lan, L. Jin, A. Kovacs, Alexander Grutter, Brian Kirby, R. Beerwerth, M. Waschk, Annika Stellhorn, U. Rucker, R. E. Dunin-Borkowski, Th. Bruckel
Magnetoelectric (ME) coupling in La 0.7Sr 0.3MnO 3/Pb(Mg 1/3Nb 2/3)d0.7^Ti 0.3O 3 (LSMO/PMN-PT (001)) has been probed in the past years to identify the underlying mechanism behind it. PMN-PT, which is well known for its excellent piezoelectric properties

Manipulation of Coupling and Magnon Transport in Magnetic Metal-Insulator Hybrid Structures

June 15, 2020
Author(s)
Yabin Fan, Patrick Quarterman, Joseph Finley, Jiahao Han, Pengxiang Zhang, Justin T. Hou, Mark D. Stiles, Alexander Grutter, Luqiao Liu
Ferromagnetic metals and insulators are widely used for generation, control and detection of magnon spin signals. Most magnonic structures are based primarily on either magnetic insulators or ferromagnetic metals, while heterostructures integrating both of

Correlation-Driven Eightfold Magnetic Anisotropy in a Two-Dimensional Oxide Monolayer

April 10, 2020
Author(s)
Zhangzhang Cui, Alexander Grutter, Hua Zhou, Hui Cao, Yongqi Dong, Dustin A. Gilbert, Jingyuan Wang, Yi-Sheng Liu, Jiaji Ma, Zhenpeng Hu, Jinghua Guo, Jing Xia, Brian Kirby, Padraic Shafer, Elke Arenholz, Hanghui Chen, Xiaofang Zhai, Yalin Lu
Engineering magnetic anisotropy (MA) in two-dimensional (2D) ferromagnetic materials has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by 2D ferromagnetic materials has only two stable spin directions

Strain-Induced Majority Carrier Inversion in Ferromagnetic Epitaxial LaCoO^d3-d Thin Films

March 4, 2020
Author(s)
Vipul Chaturvedi, Jeff Walter, Arpita Paul, Alexander Grutter, Brian Kirby, Jong Seok Jeong, Hua Zhou, Zhan Zhang, Biqiong Yu, Martin Greven, K. Andre Mkhoyan, Turan Birol, Chris Leighton
Tensile-strained LaCoO 3-δ thin films are ferromagnetic, in sharp contrast to the zero-spin bulk, although no clear consensus has emerged as to the origin of this phenomenon. While magnetism has been heavily studied, relatively little attention has been

Emergent Electric Field Control of Phase Transformation in Oxide Superlattices

February 1, 2020
Author(s)
Di Yi, Yujia Wang, Olaf M. J. van t'Erve, Liubin Xu, Hongtao Yuan, Michael J. Veit, Purnima P. Balakrishnan, Yongseong Choi, Alpha T. N'Diaye, Padraic Shafer, E. Arenholz, Alexander Grutter, Haixuan Xu, Pu Yu, Berend T. Jonker, Yuri Suzuki
Electric fields have been shown to transform materials with respect to their structure and properties, thus enabling many applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage

Dysprosium Iron Garnet Thin Films with Perpendicular Magnetic Anisotropy on Silicon

January 1, 2020
Author(s)
Jackson J. Bauer, Ethan R. Rosenberg, Subhajit Kundu, K. Andre Mkhoyan, Patrick Quarterman, Alexander Grutter, Brian Kirby, Julie Borchers, Caroline A. Ross
Magnetic insulators, such as the rare-earth iron garnets, are promising materials for energy-efficient spintronic memory and logic devices, and their anisotropy, magnetization and other properties can be tuned over a wide range through selection of the

Damping Enhancement in Coherent Ferrite-Insulating-Paramagnet Bilayers

November 19, 2019
Author(s)
Jacob J. Wisser, Alexander Grutter, Dustin A. Gilbert, Alpha T. N'Diaye, Christoph Klewe, Padraic Shafer, Elke Arenholz, Yuri Suzuki, Satoru Emori
High-quality epitaxial ferrites, such as low-damping MgAl-ferrite (MAFO), are promising nanosclae building blocks for all-oxide heterostructures driven by pure spin current. However, the impact of oxide interfaces on spin dynamics in such heterostructures

Tunable Magnetic Ordering through Cation Selection in Entropic Spinel Oxides

October 21, 2019
Author(s)
Brianna Musico, Quinton Wright, T. Zac Ward, Alexander Grutter, Elke Arenholz, Dustin Gilbert, David Mandrus, Veerle Keppens
Twelve multicomponent spinels, comprised of (Mg, Cr, Mn, Co, Fe, Ni, Cu, and/or Zn)(Cr, Fe or Al) 2O 4, were prepared using solid state synthesis methods, resulting in nine homogenous, single phase samples with a Fm-3m structure, and three samples with

Ultrathin Interfacial Layer with Suppressed Room Temperature Magnetization in Magnesium Aluminum Ferrite Thin Films

September 24, 2019
Author(s)
Jacob J. Wisser, Satoru Emori, Lauren Riddiford, Aaron Altman, Peng Li, Krishnamurthy Mahalingam, Brittany T. Urwin, Brandon M. Howe, Michael R. Page, Alexander Grutter, Brian Kirby, Yuri Suzuki
Low-damping magnetic oxide thin films with small thicknesses are essential for efficient insulator spintronic devices, particularly those driven by spin torques effects. Here, we investigate depth-resolved compositional and magnetic properties of epitaxial

Effect of Oxygen Stoichiometry on the Magnetization Profiles and Negative Magnetization in LSMO Thin Films

September 14, 2019
Author(s)
Robbyn Trappen, Alexander Grutter, Chih-Yeh Huang, Aubrey Penn, Navid Mottaghi, Saeed Yousefi, Allison Haertter, Shalini Kumari, James LeBeau, Brian Kirby, Mikel B. Holcomb
The depth dependent magnetization in thin film oxygen stoichiometric and oxygen deficient La 0.7Sr 0.3MnO 3 is investigated by using polarized neutron reflectivity. The stoichiometric sample shows enhanced interfacial magnetization relative to the rest of