Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Ivan Burenkov (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 36 of 36

Time-Resolving Quantum Measurement Enables Energy-Efficient, Large-Alphabet Communication

September 21, 2020
Author(s)
Ivan Burenkov, Jabir Marakkarakath Vadakkepurayil, Abdella Battou, Sergey Polyakov
Information exchange requires a measurement of physical states. Because quantum measurements enable accuracy beyond the classical shot-noise limit, they are successfully used to develop measurement tools and applications. In particular, quantum-measurement

Quantum receiver for large alphabet communication

February 21, 2018
Author(s)
Sergey Polyakov, Ivan Burenkov, Olga Tikhonova
Quantum mechanics allows measurements that surpass the fundamental sensitivity limits of classical methods. To benefit from the quantum advantage in a practical setting, the receiver should use communication channel resources optimally; this can be done

Software for complete mode structure analysis of a light field

June 26, 2017
Author(s)
Ivan A. Burenkov, Sergey V. Polyakov
We present a software package aimed at simulating photon-number probability distributions of a range of naturally occurring classical and non-classical states of light. This software can generate arbitrary probability distributions based on the known mode

Coherent quantum frequency bridge: phase preserving, nearly-noiseless parametric frequency converter

May 3, 2017
Author(s)
Ivan A. Burenkov, Yu-Hsiang Cheng, Tim O. Thomay, Glenn S. Solomon, Alan L. Migdall, Thomas Gerrits, Adriana E. Lita, Sae Woo Nam, Lynden K. Shalm, Sergey V. Polyakov
We characterize an efficient and nearly-noiseless parametric frequency upconverter. The ultra- low noise regime is reached by the wide spectral separation between the input and pump frequencies and the low pump frequency relative to the input photons. The

Full statistical mode reconstruction of a light field via a photon-number resolved measurement

May 2, 2017
Author(s)
Ivan A. Burenkov, Sergey V. Polyakov, Thomas Gerrits, Timothy J. Bartley, Georg Harder, Christine Silberhorn, Ankita Sharma, Elizabeth A. Goldschmidt
We present a method to reconstruct the mode structure and optical losses of multimode conjugated optical fields using an experimentally measured joint photon-number probability distribution. We demonstrate nearly-perfect reconstruction of a multimode field