An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Paulina S. Kuo, Thomas Gerrits, Varun B. Verma, Sae Woo Nam
We characterize an entangled-photon-pair source that produces signal and idler photons at 1533 nm and 1567 nm using fiber-assisted signal-photon spectroscopy. By erasing the polarization distinguishability, we observe interference between the two down
From an information processing point of view, two of the key properties of quantum physics are the no-signaling principle and the Grover search lower bound. That is, despite admitting stronger-than-classical correlations, quantum mechanics does not imply
Advances in single photon creation, transmission, and detection suggest that sending quantum information over optical fibers may have losses low enough to be correctable using a quantum error correcting code. Such error-corrected communication is
Daniel Lum, Michael S. Allman, Thomas Gerrits, Cosmo Lupo, Seth Lloyd, Varun Verma, Sae Woo Nam, John Howell
During the first half of the 20th century, enigma machines (i.e., pseudorandom polyalphabetic ciphers) of increasing sophistication gave better resistance against brute-force codebreaking attacks. However, the ultimate form of cryptographic security is
Paulina S. Kuo, Thomas Gerrits, Varun B. Verma, Sae Woo Nam, Oliver T. Slattery, Lijun Ma, Xiao Tang
We apply single-photon, fiber-assisted spectroscopy to characterize photon-pair generation with CW pumping. Using this spectrometer, we observe biphoton interference with unequal biphoton arrival times at the beamsplitter.
Marissa Giustina, Marijn Versteegh, Soren Wengerowsky, Johannes Handsteiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Koffler, Larsson Jan-Ake, Carlos Abellan, Waldimar Amaya, Valerio Pruneri, Morgan Mitchell, Joern Beyer, Thomas Gerrits, Adriana Lita, Krister Shalm, Sae Woo Nam, Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, Anton Zeilinger
Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the
Oliver T. Slattery, Lijun Ma, Paulina S. Kuo, Xiao Tang
Spontaneous parametric down-conversion (SPDC) is a common method to generate entangled photon pairs for use in quantum communications. The generated single photon linewidth is a critical issue for photon-atom interactions in quantum memory applications. We
Lijun Ma, Oliver T. Slattery, Paulina S. Kuo, Xiao Tang
Quantum memory is a key device in the implementation of quantum repeaters for quantum communications and quantum networks. We demonstrated a quantum memory based on electromagnetically-induced transparency (EIT) in a warm cesium atomic cell. The quantum
Oliver T. Slattery, Paulina S. Kuo, Lijun Ma, Xiao Tang
Quantum repeaters require entangled photon pair sources to connect flying qubits in the telecommunication band and stationary qubits at atomic transition wavelengths and linewidths for quantum memories. We have experimentally implemented a narrow linewidth
Yu-Hsiang Cheng, Tim O. Thomay, Glenn S. Solomon, Alan L. Migdall, Sergey Polyakov
We demonstrate phase preservation in a frequency up-conversion process at the single-photon level. This phase preservation enables the applications of frequency conversion of entangled photon pairs. Periodically poled lithium niobate waveguides and a 1550
Quantum entanglement is the fundamental resource for quantum information processing and communications, including secure data rates with higher capacities and better error resilience [1-9]. In dense-coded quantum communication channels, it is desirable to
Hiroki Takesue, Shellee D. Dyer, Martin Stevens, Varun Verma, Richard Mirin, Sae Woo Nam
Using high-efficiency superconducting nanowire single-photon detectors based on MoSi, we successfully achieved quantum teleportation of weak coherent states over 100 km of fiber with an average fidelity of 82.9 = + or -} 1.7% for six distinct input states