An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Hiroki Takesue, Shellee D. Dyer, Martin Stevens, Varun Verma, Richard Mirin, Sae Woo Nam
Using high-efficiency superconducting nanowire single-photon detectors based on MoSi, we successfully achieved quantum teleportation of weak coherent states over 100 km of fiber with an average fidelity of 82.9 = + or -} 1.7% for six distinct input states
Tian Zhong, Hongchao Zhou, Rob Horansky, Catherine Lee, Varun Verma, Adriana Lita, Alessandro Restelli, Joshua Bienfang, Richard Mirin, Thomas Gerrits, Sae Woo Nam, Francesco Marsili, Zhenshen Zhang, Ligong Wang, Dirk Englund, Gregory Wornell, Jeffrey Shapiro, Franco N. Wong
Quantum key distribution (QKD) is a secure communication technology whose security is guaranteed by the laws of physics. However, its widespread use has been hindered in part by low secure-key throughput due to the inherent loss and de-coherence of photons
The classical understanding of gravity yields specific observ- able consequences, the most striking of which is the emergence of a 1/r2 force. In so far as communication can arise via such interactions between distant particles, we can ask what would be
We examine an all-optical atomic-polarization-gate scheme using a polarization-selective Kerr phase-shift technique. Using a Kerr π-phase-shift technique, we selectively write a π phase shift to one of the circularly polarized components of a linearly
Runbing Li, Chengjie Zhu, Lu Deng, Edward W. Hagley
We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a p phase shift to one circularly-polarized component of a linearly-polarized
Jacob M. Taylor, Jack Hansom, Carsten Schulte, Claire Le Gall, Clemens Matthiesen, Edmund Clarke, Maxime Hugues, Mete Atature
Semiconductor quantum dots (QDs) offer an efficient and scalable interface between single spins and optical photons. However, the solid-state environment of the QD represents an inherent source of noise, generally considered detrimental to coherent control
Michael A. Wayne, Joshua C. Bienfang, Allessandro Restelli, P. G. Kwiat
Reducing afterpulsing in single-photon avalanche diodes (SPADs) allows operation with shorter recovery times and higher detection rates. Afterpulsing in SPADs can be reduced by reducing the total avalanche charge. We use a periodic quenching system to
We show that, by treating the gravitational interaction between two mechanical resonators as a classical measurement channel, a gravitational decoherence model results that is equivalent to a model first proposed by Diosi. The resulting decoherence model
Tian Zhong, Hongchao Zhou, Ligong Wang, Gregory Wornell, Zheshen Zhang, Jeffrey Shapiro, Franco N. Wong, Rob Horansky, Varun Verma, Adriana Lita, Richard Mirin, Thomas Gerrits, Sae Woo Nam, Alessandro Restelli, Joshua Bienfang, Francesco Marsili, Matthew Shaw
We demonstrate two high-dimensional QKD protocols - secure against collective Gaussian attacks - yielding up to 8.6 secure bits per photon and 6.7 Mb/s throughput, with 6.9 bits per photon after transmission through 20 km of fiber.
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Lijun Ma, Xiao Tang
Using a domain-engineered, periodically poled LiNbO3 grating, we investigate polarization-entangled photon-pair generation near 1550 nm wavelength using type-II spontaneous parametric down-conversion.
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Lijun Ma, Xiao Tang
We describe the design and application of domain-engineered periodically poled lithium niobate (PPLN) for use as a source of entangled photons and for other tools in quantum information and communications. By specially designing and controlling the PPLN
Jacob M. Taylor, Tolga Bagci, A Simonsen, Silvan Schmid, L Villanueva, Emil Zeuthen, Anders Sorensen, Koji Usami, A Schliesser, E.S. Polzik
Low-loss transmission and sensitive recovery of weak radio-frequency (rf) and mi- crowave signals is an ubiquitous technological challenge, crucial in fields as diverse as radio astronomy, medical imaging, navigation and communication, including those of
Jacob M. Taylor, Silvan Schmid, Tolga Bagci, Emil Zeuthen, Patrick Herring, Maja Cassidy, C. M. Marcus, Bartolo Amato, Anja Boisen, Yong C. Shin, Jing Kong, Anders Sorensen, Koji Usami, E.S. Polzik
Due to their exceptional mechanical and optical properties, dielectric silicon nitride (SiN) mi- cromembranes have become the centerpiece of many optomechanical experiments. Efficient capac- itive coupling of the membrane to an electrical system would