An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Anand Bhattacharya, Brian Skinner, Guru S. Khalsa, Alexey V. Suslov
When an electronic system is subjected to a suffciently strong magnetic field that the cyclotron energy is larger than the Fermi energy, the system enters the \extreme quantum limit" (EQL) and becomes susceptible to a number of instabilities. Bringing a
We here report the observed magneto-transport behavior in a hydrogen-intercalated epitaxial graphene device grown on an SiC substrate. We analyze both the longitudinal and Hall resistances in order to determine the classical carrier concentration and
Takayuki Shiino, Se-Hyeok Oh, Paul M. Haney, Seo-Won Lee, Gyungchoon Go, Byong-Guk Park, Kyung-Jin Lee
We theoretically investigate dynamics of antiferromagnetic domain walls driven by spin-orbit torques in antiferromagnet/heavy metal bilayers. We show that spin-orbit torques drive antiferromagnetic domain walls much faster than ferromagnetic domain walls
We study the magnetic anisotropy which arises at the interface between a thin film ferromagnet and a 3-d Rashba material. The 3-d Rashba material is characterized by the spin-orbit strength $\alpha$ and the direction of broken bulk inversion symmetry $\hat
Jason Campbell, Jason Ryan, Kin P. Cheung, David J. Gundlach, Changze Liu, Canute I. Vaz, Richard G. Southwick III, Anthony S. Oates, Ru Huang
Wave scattering by a potential step is a nearly ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the
Nick Fletcher, Gert Rietveld, James K. Olthoff, Ilya F. Budovsky
The proposed redefinition of several SI base units is a topic that has been on the metrology agenda for the last decade. The general principles and the motivation for the changes have been presented at the NCSLI several times. However, recent progress on
Barry Farmer, Vinayak Bhat, Andrew L. Balk, Eric Teipel, Nathan Smith, John Unguris, D.J. Keavney, Todd Hastings, L .E. De Long
Quasicrystals are rarely found in nature and are difficult to grow in the laboratory, but exhibit unique physical properties resulting from their signature long-range structural order without periodic translational symmetry. Magnetic interactions in
Organic-inorganic halide CH 3NH 3PbI 3 solar cells have attracted enormous attention in recent years due to their remarkable power conversion efficiency. These materials should exhibit interesting spin-dependent properties as well, owing to the strong spin
Dmitry Veksler, Jason Campbell, Kin (Charles) Cheung, J. Zhong, H. Zhu, C. Zhao
A methodology for evaluation of ultra-fast interfacial traps, using jitter measurements as a probe, is developed. This methodology is applied to study the effect of PBTI stress on density of ultra-fast electron traps (with 500ps to 5ns characteristic
John S. Villarrubia, Vipin N. Tondare, Andras Vladar
The combination of SEM for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for dimensional metrology in 3D. A method is described
Engineering of the optical resonances in plasmonic resonators arrays is achieved by virtue of the intrinsic properties to the constituent structures such as composition, size and shape and by controlling the inter-resonator interactions by virtue the array
We investigate a method for entangling two singlet-triplet qubits in adjacent double quantum dots via capacitive interactions. In contrast to prior work, here we focus on a regime with strong interactions between the qubits. The interplay of the
John S. Villarrubia, Andras Vladar, Bin Ming, Regis J. Kline, Daniel F. Sunday, Jasmeet Chawla, Scott List
The width and shape of 10 nm to 12 nm wide lithographically patterned SiO2 lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines widths and shapes are parameters